• Title/Summary/Keyword: plant breeding

Search Result 1,786, Processing Time 0.024 seconds

Genetic Modification of Coffee Plants

  • Shinjiro Ogita;Hirotaka Uefuji;Park, Yong-Eui;Tomoko Hatanaka;Mikihiro Ogawa;Yube Yamaguchi;Nozomu Koizumi;Hiroshi Sano
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.91-94
    • /
    • 2002
  • An efficient molecular breeding technique for coffee plants was developed. In order to produce transgenic coffee plants, we established a model transformation procedure via Agrobacterium method. We isolated a gene encoding a protein possessing 7-methylxanthine methyltransferase (theobromine synthase) activity, and it was designated as Coffea arabica 7-methylxanthine methyl transferase; CaMXMT. Using this clone, we produced transgenic coffee plants, in which the expression of CaMXMT is suppressed by double-stranded RNA interference (RNAi) andlor anti-sense methods. The expression pattern of CaMXMT was analyzed by reverse transcription-PCR method and we found that, in the transformed cell lines, the level of transcripts were obviously suppressed by RNAi. The endogenous level of caffeine in the transformed cells was dramatically reduced in comparison with non-transformed cells.

The Complete Chloroplast Genome Sequence and Intra-Species Diversity of Rhus chinensis

  • Kim, Inseo;Park, Jee Young;Lee, Yun Sun;Joh, Ho Jun;Kang, Shin Jae;Murukarthick, Jayakodi;Lee, Hyun Oh;Hur, Young-Jin;Kim, Yong;Kim, Kyung Hoon;Lee, Sang-Choon;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.243-251
    • /
    • 2017
  • Rhus chinensis is a shrub widely distributed in Asia. It has been used for traditional medicine and ecological restoration. Here, we report the complete chloroplast genome sequence of two R. chinensis genotypes collected from China and Korea. The assembled chloroplast genome of Chinese R. chinensis is 149,094 bp long, consisting of a large single copy (97,246 bp), a small single copy (18,644 bp) and a pair of inverted repeats (16,602 bp). Gene annotation revealed 77 protein coding genes, 30 tRNA genes, and 4 rRNA genes. A phylogenomic analysis of the chloroplast genomes with 11 known complete chloroplast genomes clarified the relationship of R. chinensis with the other plant species in the Sapindales order. A comparative chloroplast genome analysis identified 170 SNPs and 85 InDels at intra-species level of R. chinensis between Chinese and Korean collections. Based on the sequence diversity between Korea and Chinese R. chinensis plants, we developed three DNA markers useful for genetic diversity and authentication system. The chloroplast genome information obtained in this study will contribute to enriching genetic resources and conservation of endemic Rhus species.

Plant Breeding in the 21st Century

  • Phillips, Ronald L.
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.187-193
    • /
    • 2009
  • Congratulations to the Korean Society of Breeding Science on the occasion of the $40^{th}$ anniversary. Such scientific societies serve an important role in disseminating scientific information, encouraging world class research, and integrating related disciplines. Plant breeding is a solution-driven science to meet ever-increasing needs with the ultimate application in mind throughout the process. Plant breeding will continue to involve both the lab and field even as more molecular technologies are applied to the improvement of plants and animals. Today and into the future, genetics and genomics will play major roles. This keynote talk first presents plant breeding in the context of the need to meet future food supplies, then reviews some of the emerging and important technologies, documents some of the traits improved through the new technologies, and finally adds some philosophical points with special emphasis on the younger scientist.

Inhibitors Targeting ABA Biosynthesis and Catabolism Can Be Used to Accurately Discriminate between Haploid and Diploid Maize Kernels during Germination

  • Kwak, Jun Soo;Kim, Sung-Il;Song, Jong Tae;Ryu, Si Wan;Seo, Hak Soo
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.204-212
    • /
    • 2017
  • There is a growing preference for using doubled haploids (DHs) in maize breeding programs because they reduce the time required to generate and evaluate new lines to 2 years or less. However, there is an urgent need for efficient techniques that accurately discriminate between haploid and diploid maize kernels. Here, we investigate the effects of several hormones and chemicals on the germination of haploid and diploid maize kernels, including auxin, cytokinin, ethylene, abscisic acid (ABA) biosynthesis inhibitor (fluridone), ABA catabolism inhibitor (diniconazole), methyl jasmonate (MeJA), and NaCl. Ethylene effectively stimulated the germination of both haploid and diploid maize kernels. The ABA biosynthesis inhibitor fluridone, the ABA catabolism inhibitor diniconazole, and MeJA selectively stimulated the germination of haploid maize kernels. By contrast, gibberellin, 1-naphthaleneacetic acid (NAA), kinetin, and NaCl inhibited the germination of both haploid and diploid maize kernels. These results indicate that the germination of haploid maize kernels is selectively stimulated by fluridone and diniconazole, and suggest that ABA-mediated germination of haploid maize kernels differs from that of diploid maize kernels and other plant seeds.

Non-pungent Capsicum Contains a Deletion in the Capsaicinoid Synthetase Gene, which Allows Early Detection of Pungency with SCAR Markers

  • Lee, Choong-Jae;Yoo, Eun Young;Shin, Joo Hyun;Lee, Jemin;Hwang, Hee-Sook;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.262-267
    • /
    • 2005
  • The capsaicinoid synthetase (CS) gene cosegregated perfectly with the C locus, which controls the presence of pungency, in 121 $F_2$ individuals from a cross between 'ECW123R' and 'CM334', both of Capsicum annuum. We concluded that CS and C are tightly linked. Sequence analysis of the genes of four pungent and four non-pungent pepper lines showed that the non-pungent peppers had a 2,529 bp-deletion in the 5' upstream region of CS. We have developed molecular markers of the C locus to detect pungency at the seedling stage. Based on the deleted sequence, we developed five SCAR markers, two of them being codominant. These SCAR markers will be useful for easy, accurate, and early detection of non-pungent individuals in breeding programs.

Identification of Heterosis QTLs for Yield and Yield-Related Traits in Indica-Japonica Recombinant Inbred Lines of Rice (Oryza sativa L.)

  • Kim, Chang-Kug;Chu, Sang-Ho;Park, Han Yong;Seo, Jeonghwan;Kim, Backki;Lee, Gileung;Koh, Hee-Jong;Chin, Joong Hyoun
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.371-389
    • /
    • 2017
  • Supplying sufficient rice to growing populations is a global challenge. Hybrid indica rice varieties exploiting heterosis have increased yields, but inter-subspecific crosses between indica and japonica varieties are hampered by sterility. Examination and genetic understanding of yield heterosis in indica/japonica crosses addressing yield barriers are basic requirements. In this study, QTLs for heterosis of yield traits were identified in indica-japonica recombinant inbred lines (RILs) using a total of 178 RILs originating from Dasanbyeo (indica) ${\times}$ TR22183 (japonica) (DT-RILs) and their backcrossed populations. Nine of sixty-six major quantitative trait loci (QTLs) identified in DT-RILs exhibited heterosis. Heterosis QTLs clustered with other traits on chromosomes 1, 4, and 8, and clusters were conserved between different RILs. The clusters contained several known yield enhancement genes/QTLs. Specific heterotic allele combinations contributed to four major heterosis QTLs, particularly for panicle and spikelet number traits. Heterosis for yield and yield-related traits was explained by the harmonized effects of overdominance, dominance, and epistatic interactions in inter-subspecific breeding populations.