• Title/Summary/Keyword: planning target volume (PTV)

Search Result 143, Processing Time 0.023 seconds

Carotid sparing intensity modulated radiotherapy on early glottic cancer: preliminary study

  • Choi, Hoon Sik;Jeong, Bae Kwon;Jeong, Hojin;Song, Jin Ho;Kim, Jin Pyeong;Park, Jung Je;Woo, Seung Hoon;Kang, Ki Mun
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.26-33
    • /
    • 2016
  • Purpose: To compare the dose distribution between carotid sparing intensity modulated radiotherapy (IMRT) and opposed lateral field technique (LAFT), and to determine the effects of carotid sparing IMRT in early glottic cancer patients who have risk factors for atherosclerosis. Materials and Methods: Ten early glottic cancer patients were treated with carotid sparing IMRT. For each patient, the conventional LAFT plan was developed for comparison. IMRT and LAFT plans were compared in terms of planning target volume (PTV) coverage, conformity index, homogeneity index, and the doses to planning organ at risk volume (PRV) for carotid arteries, spinal cord and pharyngeal constrictor muscle. Results: Recurrence was not observed in any patients during the follow-up period. $V_{95%}$ for PTV showed no significant difference between IMRT and LAFT plans, while $V_{100%}$ was significantly higher in the IMRT plan (95.5% vs. 94.6%, p = 0.005). The homogeneity index (11.6%) and conformity index (1.4) in the IMRT plan were significantly better than those in the LAFT plans (8.5% and 5.1, respectively) (p = 0.005). The median $V_{5Gy}$ (90.0%), $V_{25Gy}$ (13.5%), and $V_{50Gy}$ (0%) for carotid artery PRV in the IMRT plan were significantly lower than those in the LAFT plan (99.1%, 89.0%, and 77.3%, respectively) (p = 0.005). Conclusion: Our study suggests that carotid sparing IMRT can significantly decrease the dose to carotid arteries compared to LAFT, and it would be considered for early glottic cancer patient with high risk of atherosclerosis.

Comparison and Evaluation of radiotherapy plans by multi leaf collimator types of Linear accelerator (선형가속기의 다엽콜리메이터 형태에 따른 치료계획 비교 평가)

  • Lim, Ji Hye;Chang, Nam Joon;Seok, Jin Yong;Jung, Yun Ju;Won, Hui Su;Jung, Hae Youn;Choi, Byeong Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.129-138
    • /
    • 2018
  • Purpose : An aim of this study was to compare the effect of multi leaf collimator(MLC) types for high dimension radiotherapy in treatment sites used clinically. Material and Method : 70 patients with lung cancer, spine cancer, prostate cancer, whole pelvis, head and neck, breast cancer were included in this study. High definition(HD) MLC of TrueBeam STx (Varian Medical system, Palo Alto, CA) and millenium(M) MLC of VitalBeam (Varian Medical system, Palo Alto, CA) were used. Radiotherapy plans were performed for each patient under same treatment goals with Eclipse (Version 13.7, Varian Palo Alto USA, CA). To compare the indicators of the radiotherapy plans, planning target volume(PTV) coverage, conformity index(CI), homogeneity index(HI), and clinical indicators for each treatment sites in normal tissues were evaluated. To evaluate low dose distribution, $V_{30%}$ values were compared according to MLC types. Additionally, length and volume of targets for each treatment sites were investigated. Result : In stereotatictic body radiotherapy(SBRT) plan for lung, the average value of PTV coverage was reduced by 0.52 % with HD MLC. With SBRT plan using HD MLC for spine, the average value of PTV coverage decreased by 0.63 % and maximum dose decreased by 1.13 %. In the test of CI and HI, the values in SBRT plan with HD MLC for spine were 1.144, 1.079 and the values using M MLC were 1.160, 1.092 in SBRT plan for lung, The dose evaluation of critical organ was reduced by 1.48 % in the ipsilateral lung mean dose with HD MLC. In prostate cancer volumetric modulated arc therapy(VMAT) with HD MLC, the mean dose and the $V_{30}$ of bladder and the mean dose and the $V_{25}$ of rectum were reduced by 0.53 %, 1.42 %, 0.97 %, and 0.69 %, respectively (p<0.05). The average value of heart mean dose was reduced by 0.83 % in breast cancer VMAT with M MLC. Other assessment indices for treatment sites showed no significant difference between treatment plans with two types of MLC. Conclusion : Using HD MLC had a positive impact on the PTV coverage and normal tissue sparing in usually short or small targets such as lung and spine SBRT and prostate VMAT. But, there was no significant difference in targets with long and large such as lung, head and neck, and whole pelvis for VMAT.

  • PDF

Quantitative Evaluation of Setup Error for Whole Body Stereotactic Radiosurgery by Image Registration Technique

  • Kim, Young-Seok;Yi, Byong-Yong;Kim, Jong-Hoon;Ahn, Seung-Do;Lee, Sang-wook;Im, Ki-Chun;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.103-105
    • /
    • 2002
  • Whole body stereotactic radiosurgery (WBSRS) technique is believed to be useful for the metastatic lesions as well as relatively small primary tumors in the trunk. Unlike stereotactic radiosurgery to intracranial lesion, inherent limitation on immobilization of whole body makes it difficult to achieve the reliable setup reproducibility. For this reason, it is essential to develop an objective and quantitative method of evaluating setup error for WBSRS. An evaluation technique using image registration has been developed for this purpose. Point pair image registrations with WBSRS frame coordinates were performed between two sets of CT images acquired before each treatment. Positional displacements could be determined by means of volumetric planning target volume (PTV) comparison between the reference and the registered image sets. Twenty eight sets of CT images from 19 WBSRS patients treated in Asan Medical Center have been analyzed by this method for determination of setup random error of each treatment. It is objective and clinically useful to analyze setup error quantitatively by image registration technique with WBSRS frame coordinates.

  • PDF

Evaluation of Beam-Matching Accuracy for 8 MV Photon Beam between the Same Model Linear Accelerator (동일 기종 선형가속기간 8 MV 광자선에 대한 빔 매칭 정확도 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Kang, Seong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.2
    • /
    • pp.105-114
    • /
    • 2020
  • This study aimed to assess of beam-matching accuracy for an 8 MV beam between the same model linear accelerators(Linac) commissioned over two years. Two models were got the customer acceptance procedure(CAP) criteria. For commissioning data for beam-matched linacs, the percentage depth doses(PDDs), beam profiles, output factors, multi-leaf collimator(MLC) leaf transmission factors, and the dosimetric leaf gap(DLG) were compared. In addition, the accuracy of beam matching was verified at phantom and patient levels. At phantom level, the point doses specified in TG-53 and TG-119 were compared to evaluate the accuracy of beam modelling. At patient level, the dose volume histogram(DVH) parameters and the delivery accuracy are evaluated on volumetric modulated arc therapy(VMAT) plan for 40 patients that included 20 lung and 20 brain cases. Ionization depth curve and dose profiles obtained in CAP showed a good level for beam matching between both Linacs. The variations in commissioning beam data, such as PDDs, beam profiles, output factors, TF, and DLG were all less than 1%. For the treatment plans of brain tumor and lung cancer, the average and maximum differences in evaluated DVH parameters for the planning target volume(PTV) and the organs at risk(OARs) were within 0.30% and 1.30%. Furthermore, all gamma passing rates for both beam-matched Linacs were higher than 98% for the 2%/2 mm criteria and 99% for the 2%/3 mm criteria. The overall variations in the beam data, as well as tests at phantom and patient levels remains all within the tolerance (1% difference) of clinical acceptability between beam-matched Linacs. Thus, we found an excellent dosimetric agreement to 8 MV beam characteristics for the same model Linacs.

A Study on Superficial Dose of 6MV-FFF in HalcyonTM LINAC: Phantom Study (HalcyonTM 선형가속기 6MV-FFF 에너지의 표재 선량에 대한 고찰: Phantom Study)

  • Choi, Seong Hoon;Um, Ki Cheon;Yoo, Soon Mi;Park, Je Wan;Song, Heung Kwon;Yoon, In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.31-39
    • /
    • 2020
  • Purpose: The aims of this study were to compare the superficial dose with Optically Stimulated Luminescence Dosimeter(OSLD) measurement and Treatment Planning System(TPS) calculation for 6MV-Flattening Filter Free(FFF) energy using HalcyonTM and TrueBeamTM. Materials and methods: Phantom study was performed using the CT images of human phantom. In the treatment planning system, the Planning Target Volume(PTV) was contoured which is similar to Glottic cancer. Furthermore, Point(M), Point(R), and Point(L) were contoured at the iso-center of head and neck region and 5mm bolus was applied to the body contour. Each treatment plans using 6MV-FFF energy from HalcyonTM and TrueBeamTM with static Intensity Modulated Radiation Therapy(IMRT) and Volumetric Modulated Arc Therapy(VMAT) were established with eclipse. To reproduce the same position as the TPS, OSLDs were placed at the iso-center point and 5mm bolus was applied to compare the error rate after the dose delivery. Result: The results of the study using human phantom are as follows. In case of HalcyonTM, the mean absolute error rates of the point dose using the treatment planning system and the dose measured by OSLD were 1.7%±1.2% for VMAT and 4.0±2.8% for IMRT. Also TrueBeamTM was identified as 2.4±0.4% and 8.6±1.8% respectively for VMAT and IMRT. Conclusion: Through the results of this study, TrueBeamTM confirmed that the average error rate was 2.4 times higher for VMAT and 3.6 times higher for IMRT than HalcyonTM. Therefore, based on the results of this study, If we need a more accurate dose assessment for the superficial dose, It is expected that using HalcyonTM would be better than TrueBeamTM.

The Effect of MLC Leaf Motion Constraints on Plan Quality and Delivery Accuracy in VMAT (체적조절호형방사선치료 시 갠트리 회전과 다엽콜리메이터의 이동 속도에 따른 선량분포 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Lee, Jeong-woo;Shin, Young-Joo;Kang, Dong-Jin;Jung, Jae-Yong
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.217-222
    • /
    • 2019
  • The purpose of this study is to evaluate the dose distribution by gantry rotation and MLC moving speed on treatment planning system(TPS) and linear accelerator. The dose analyzer phantom(Delta 4) was scanned by CT simulator for treatment planning. The planning target volumes(PTVs) of prostate and pancreas was prescribed 6,500 cGy, 5,000 cGy on VMAT(Volumetric Modulated Arc Therapy) by TPS while MLC speed changed. The analyzer phantom was irradiated linear accelerator using by planned parameters. Dose distribution of PTVs were evaluated by the homogeneity index, conformity index, dose volume histogram of organ at risk(rectum, bladder, spinal cord, kidney). And irradiated dose analysis were evaluated dose distribution and conformity by gamma index. The PTV dose of pancreas was 4,993 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(5,000 cGy). The dose of spinal cord, left kidney, and right kidney were accessed the lowest during 0.1 cm/deg, 1.5 cm/deg, 0.3 cm/deg. The PTV dose of prostate was 6,466 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(6,500 cGy). The dose of bladder and rectum were accessed the lowest during 0.3 cm/deg, 2.0 cm/deg. For gamma index, pancreas and prostate were analyzed the lowest error 100% at 0.8, 1.0 cm/deg and 99.6% at 0.3, 0.5 cm/deg. We should used the optimal leaf speed according to the gantry rotation if the treatment cases are performed VMAT.

Comparison of Dose Distribution between the Techniques of Non-small Cell Lung Cancer (비소세포폐암의 방사선 치료기법간의 선량분포의 비교)

  • Lee, Seung-chul;Kim, Young-jae;Jang, Seongjoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.233-239
    • /
    • 2016
  • Comparison of the dose aspect that radiation therapy treatments using IMRT, tomotherapy, mArc (modulated arc therapy). The experimental subject is non-small cell lung cancer patient. The prescription dose is 58.0 Gy to the volume of PTV(planning target volume). and spinal cord, esophagus, and liver organ is the normal organ(OAR, organ at risk). Average PTV value is 57.60 Gy in mArc and 61.04 Gy in tomotherapy and 58.95 Gy in IMRT. The average dose of the Esophagus is 2.84 Gy in m-Arc, 5.14 Gy in tomotherapy, 1.84 Gy in IMRT. The average dose of the Liver is 19.44 Gy in m-Arc, 12.22 Gy in tomotherapy, 21.97 Gy in IMRT. The average dose of the Spinal cord is 5.72 Gy in m-Arc, 7.08 Gy in tomotherapy, 6.15 Gy in IMRT. Results of this study is no significant difference between mArc and tomotherapy and Linac based IMRT in dose study and also, mArc's dose coverage and dose volume histogram is better than IMRT and tomotherapy. but, This study is limited to a disease of cancer. in addition, fewer number of groups. The wide range the more research can be developed patient-specific treatment techniques and be applied to the patients

Efficacy and Accuracy of Patient Specific Customize Bolus Using a 3-Dimensional Printer for Electron Beam Therapy (전자선 빔 치료 시 삼차원프린터를 이용하여 제작한 환자맞춤형 볼루스의 유용성 및 선량 정확도 평가)

  • Choi, Woo Keun;Chun, Jun Chul;Ju, Sang Gyu;Min, Byung Jun;Park, Su Yeon;Nam, Hee Rim;Hong, Chae-Seon;Kim, MinKyu;Koo, Bum Yong;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.64-71
    • /
    • 2016
  • We develop a manufacture procedure for the production of a patient specific customized bolus (PSCB) using a 3D printer (3DP). The dosimetric accuracy of the 3D-PSCB is evaluated for electron beam therapy. In order to cover the required planning target volume (PTV), we select the proper electron beam energy and the field size through initial dose calculation using a treatment planning system. The PSCB is delineated based on the initial dose distribution. The dose calculation is repeated after applying the PSCB. We iteratively fine-tune the PSCB shape until the plan quality is sufficient to meet the required clinical criteria. Then the contour data of the PSCB is transferred to an in-house conversion software through the DICOMRT protocol. This contour data is converted into the 3DP data format, STereoLithography data format and then printed using a 3DP. Two virtual patients, having concave and convex shapes, were generated with a virtual PTV and an organ at risk (OAR). Then, two corresponding electron treatment plans with and without a PSCB were generated to evaluate the dosimetric effect of the PSCB. The dosimetric characteristics and dose volume histograms for the PTV and OAR are compared in both plans. Film dosimetry is performed to verify the dosimetric accuracy of the 3D-PSCB. The calculated planar dose distribution is compared to that measured using film dosimetry taken from the beam central axis. We compare the percent depth dose curve and gamma analysis (the dose difference is 3%, and the distance to agreement is 3 mm) results. No significant difference in the PTV dose is observed in the plan with the PSCB compared to that without the PSCB. The maximum, minimum, and mean doses of the OAR in the plan with the PSCB were significantly reduced by 9.7%, 36.6%, and 28.3%, respectively, compared to those in the plan without the PSCB. By applying the PSCB, the OAR volumes receiving 90% and 80% of the prescribed dose were reduced from $14.40cm^3$ to $0.1cm^3$ and from $42.6cm^3$ to $3.7cm^3$, respectively, in comparison to that without using the PSCB. The gamma pass rates of the concave and convex plans were 95% and 98%, respectively. A new procedure of the fabrication of a PSCB is developed using a 3DP. We confirm the usefulness and dosimetric accuracy of the 3D-PSCB for the clinical use. Thus, rapidly advancing 3DP technology is able to ease and expand clinical implementation of the PSCB.

Feasibility of Mixed-Energy Partial Arc VMAT Plan with Avoidance Sector for Prostate Cancer (전립선암 방사선치료 시 회피 영역을 적용한 혼합 에너지 VMAT 치료 계획의 평가)

  • Hwang, Se Ha;NA, Kyoung Su;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.17-29
    • /
    • 2020
  • Purpose: The purpose of this work was to investigate the dosimetric impact of mixed energy partial arc technique on prostate cancer VMAT. Materials and Methods: This study involved prostate only patients planned with 70Gy in 30 fractions to the planning target volume (PTV). Femoral heads, Bladder and Rectum were considered as oragan at risk (OARs). For this study, mixed energy partial arcs (MEPA) were generated with gantry angle set to 180°~230°, 310°~50° for 6MV arc and 130°~50°, 310°~230° for 15MV arc. Each arc set the avoidance sector which is gantry angle 230°~310°, 50°~130° at first arc and 50°~310° at second arc. After that, two plans were summed and were analyzed the dosimetry parameter of each structure such as Maximum dose, Mean dose, D2%, Homogeneity index (HI) and Conformity Index (CI) for PTV and Maximum dose, Mean dose, V70Gy, V50Gy, V30Gy, and V20Gy for OARs and Monitor Unit (MU) with 6MV 1 ARC, 6MV, 10MV, 15MV 2 ARC plan. Results: In MEPA, the maximum dose, mean dose and D2% were lower than 6MV 1 ARC plan(p<0.0005). However, the average difference of maximum dose was 0.24%, 0.39%, 0.60% (p<0.450, 0.321, 0.139) higher than 6MV, 10MV, 15MV 2 ARC plan, respectively and D2% was 0.42%, 0.49%, 0.59% (p<0.073, 0.087, 0.033) higher than compared plans. The average difference of mean dose was 0.09% lower than 10MV 2 ARC plan, but it is 0.27%, 0.12% (p<0.184, 0.521) higher than 6MV 2 ARC, 15MV 2 ARC plan, respectively. HI was 0.064±0.006 which is the lowest value (p<0.005, 0.357, 0.273, 0.801) among the all plans. For CI, there was no significant differences which were 1.12±0.038 in MEPA, 1.12±0.036, 1.11±0.024, 1.11±0.030, 1.12±0.027 in 6MV 1 ARC, 6MV, 10MV, 15MV 2 ARC, respectively. MEPA produced significantly lower rectum dose. Especially, V70Gy, V50Gy, V30Gy, V20Gy were 3.40, 16.79, 37.86, 48.09 that were lower than other plans. For bladder dose, V30Gy, V20Gy were lower than other plans. However, the mean dose of both femoral head were 9.69±2.93, 9.88±2.5 which were 2.8Gy~3.28Gy higher than other plans. The mean MU of MEPA were 19.53% lower than 6MV 1 ARC, 5.7% lower than 10MV 2 ARC respectively. Conclusion: This study for prostate radiotherapy demonstrated that a choice of MEPA VMAT has the potential to minimize doses to OARs and improve homogeneity to PTV at the expense of a moderate increase in maximum and mean dose to the femoral heads.

Feasibility and response of helical tomotherapy in patients with metastatic colorectal cancer

  • Bae, Sun Hyun;Moon, Seong Kwon;Kim, Yong Ho;Cho, Kwang Hwan;Shin, Eung Jin;Lee, Moon Sung;Ryu, Chang Beom;Ko, Bong Min;Yun, Jina
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.320-327
    • /
    • 2015
  • Purpose: To investigate the treatment outcome and the toxicity of helical tomotherapy (HT) in patients with metastatic colorectal cancer (mCRC). Materials and Methods: We retrospectively reviewed 18 patients with 31 lesions from mCRC treated with HT between 2009 and 2013. The liver (9 lesions) and lymph nodes (9 lesions) were the most frequent sites. The planning target volume (PTV) ranged from 12 to 1,110 mL (median, 114 mL). The total doses ranged from 30 to 70 Gy in 10-30 fractions. When the ${\alpha}/{\beta}$ value for the tumor was assumed to be 10 Gy for the biologically equivalent dose (BED), the total doses ranged from 39 to $119Gy_{10}$ (median, $55Gy_{10}$). Nineteen lesions were treated with concurrent chemotherapy (CCRT). Results: With a median follow-up time of 16 months, the median overall survival for 18 patients was 33 months. Eight lesions (26%) achieved complete response. The 1- and 3-year local progression free survival (LPFS) rates for 31 lesions were 45% and 34%, respectively. On univariate analysis, significant parameters influencing LPFS rates were chemotherapy response before HT, aim of HT, CCRT, PTV, BED, and adjuvant chemotherapy. On multivariate analysis, $PTV{\leq}113mL$ and $BED>48Gy_{10}$ were associated with a statistically significant improvement in LFPS. During HT, four patients experienced grade 3 hematologic toxicities, each of whom had also received CCRT. Conclusion: The current study demonstrates the efficacy and tolerability of HT for mCRC. To define optimal RT dose according to tumor size of mCRC, further study should be needed.