• Title/Summary/Keyword: planning target volume

Search Result 282, Processing Time 0.024 seconds

Comparative evaluation of dose according to changes in rectal gas volume during radiation therapy for cervical cancer : Phantom Study (자궁경부암 방사선치료 시 직장가스 용적 변화에 따른 선량 비교 평가 - Phantom Study)

  • Choi, So Young;Kim, Tae Won;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.89-97
    • /
    • 2021
  • Purpose: The purpose of this study is to compare and evaluate the dose change according to the gas volume variations in the rectum, which was not included in the treatment plan during radiation therapy for cervical cancer. Materials and methods: Static Intensity Modulated Radiation Therapy (S-IMRT) using a 9-field and Volumetric Modulated Arc Therapy (VMAT) using 2 full-arcs were established with treatment planning system on Computed Tomography images of a human phantom. Random gas parameters were included in the Planning Target Volume(PTV) with a maximum change of 2.0 cm in increments of 0.5 cm. Then, the Conformity Index (CI), Homogeneity Index (HI) and PTV Dmax for the target volume were calculated, and the minimum dose (Dmin), mean dose (Dmean) and Maximum Dose (Dmax) were calculated and compared for OAR(organs at risk). For statistical analysis, T-test was performed to obtain a p-value, where the significance level was set to 0.05. Result: The HI coefficients of determination(R2) of S-IMRT and VMAT were 0.9423 and 0.8223, respectively, indicating a relatively clear correlation, and PTV Dmax was found to increase up to 2.8% as the volume of a given gas parameter increased. In case of OAR evaluation, the dose in the bladder did not change with gas volume while a significant dose difference of more than Dmean 700 cGy was confirmed in rectum using both treatment plans at gas volumes of 1.0 cm or more. In all values except for Dmean of bladder, p-value was less than 0.05, confirming a statistically significant difference. Conclusion: In the case of gas generation not considered in the reference treatment plan, as the amount of gas increased, the dose difference at PTV and the dose delivered to the rectum increased. Therefore, during radiation therapy, it is necessary to make efforts to minimize the dose transmission error caused by a large amount of gas volumes in the rectum. Further studies will be necessary to evaluate dose transmission by not only varying the gas volume but also where the gas was located in the treatment field.

The Optimum of Respiratory Phase Using the Motion Range of the Diaphragm: Focus on Respiratory Gated Radiotherapy of Lung Cancer (횡격막의 움직임을 이용한 최적화된 호흡 위상의 선택: 폐암의 호흡 동기 방사선치료 중심)

  • Kim, Myoungju;Im, Inchul;Lee, Jaeseung;Kang, Suman
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.157-163
    • /
    • 2013
  • This study was to analyze quantitatively movement of planning target volume (PTV) and change of PTV volume through movement of diaphragm according to breathing phase. The purpose of present study was to investigate optimized respiration phase for radiation therapy of lung cancer. Simulated breathing training was performed in order to minimize systematic errors which is caused non-specific or irregular breathing. We performed 4-dimensional computed tomography (4DCTi) in accordance with each respiratory phase in the normalized respiratory gated radiation therapy procedures, then not only defined PTVi in 0 ~ 90%, 30 ~ 70% and 40 ~ 60% in the reconstructed 4DCTi images but analyzed quantitatively movement and changes of volume in PTVi. As a results, average respiratory cycle was $3.4{\pm}0.5$ seconds by simulated breathing training. R2-value which is expressed as concordance between clinically induced expected value and actual measured value, was almost 1. There was a statistically significant. And also movement of PTVi according to each respiration phase 0 ~ 90%, 30 ~ 70% and 40 ~ 60% were $13.4{\pm}6.4mm$, $6.1{\pm}2.9mm$ and $4.0{\pm}2.1mm$ respectively. Change of volume in PTVi of respiration phase 30 ~ 70% was decreased by $32.6{\pm}8.7%$ and 40 ~ 60% was decreased by $41.6{\pm}6.2%$. In conclusion, PTVi movement and volume change was reduced, when we apply a short breathing phase (40 ~ 60%: 30% duty cycle) range. Furthermore, PTVi margin considered respiration was not only within 4mm but able to get uniformity of dose.

Dosimetric and Radiobiological Evaluation of Dose Volume Optimizer (DVO) and Progressive Resolution Optimizer (PRO) Algorithm against Photon Optimizer on IMRT and VMAT Plan for Prostate Cancer

  • Kim, Yon-Lae;Chung, Jin-Beom;Kang, Seong-Hee;Eom, Keun-Yong;Song, Changhoon;Kim, In-Ah;Kim, Jae-Sung;Lee, Jeong-Woo
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.106-114
    • /
    • 2018
  • This study aimed to compare the performance of previous optimization algorithms against new a photon optimizer (PO) algorithm for intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans for prostate cancer. Eighteen patients with prostate cancer were retrospectively selected and planned to receive 78 Gy in 39 fractions of the planning target volume (PTV). All plans for each patient optimized with the dose volume optimizer (DVO) and progressive resolution optimizer (PRO) algorithms for IMRT and VMAT were compared against plans optimized with the PO within Eclipse version 13.7. No interactive action was performed during optimization. Dosimetric and radiobiological indices for the PTV and organs at risk were analyzed. The monitor units (MU) per plan were recorded. Based on the plan quality for the target coverage, prostate IMRT and VMAT plans using the PO showed an improvement over DVO and PRO. In addition, the PO generally showed improvement in the tumor control probability for the PTV and normal tissue control probability for the rectum. From a technical perspective, the PO generated IMRT treatment plans with fewer MUs than DVO, whereas it produced slightly more MUs in the VMAT plan, compared with PRO. The PO showed over potentiality of DVO and PRO whenever available, although it led to more MUs in VMAT than PRO. Therefore, the PO has become the preferred choice for planning prostate IMRT and VMAT at our institution.

Estimation of Optimal Harvest Volume for the Long-term Forest Management Planning using Goal Programming (장기산림경영계획의 목표수확량 산출을 위한 목표계획법의 적용)

  • Won, Hyun-Kyu;Kim, Young-Hwan;Kwon, Soon-Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.125-131
    • /
    • 2009
  • To facilitate the sustainable forest management, Forest Service in Korea has assigned 2.9 million hectare forests as 'intensive management forests' and encouraged local governments to develop a strategic management plan for their forests. One of problems for the sustainable forest management in Korea is the skewed distribution of forest age classes. Currently the majority of forestlands in Korea is occupied by age classes III and IV. In this study, we intended to find an optimum harvest volume, which enable one to make the intensive management forest in Youngdong-Gun evenly distributed for the age classes and allow an even harvest volume through a 50 year time horizon. To develop an optimization model, we applied the goal programming technique which is adequate for a multi-purpose management planning. The results indicated that it is necessary to harvest 1.2 million cubic meters in each decade to achieve the most stable distribution of age classes for the study site. The harvest volume target resulted from this study would be used in a management planning or an associated policy making process in the future.

Study of overlapping setting up of Planning Target Volume for Improving Target Coverage adjacent Organ At Risk (손상위험장기에 인접한 표적 Coverage 개선을 위한 Planning Target Volume 중복 설정에 관한 연구)

  • Lee, Jung Woong;Kim, Bo Kyum;Mun, Jun Ki;Woo, Hun;Lee, Yang Hoon;Jeon, Chang Woo;Lee, Jea Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.33-41
    • /
    • 2019
  • Purpose: The purpose of this study is to improve the reduction of coverage of PTVs adjacent to organ at risk (OAR) by setting up overlapping Planning Target Volume (PTV) during Volumetric Modulated Arc Therapy(VMAT). Materials and Methods: In patients who received Whole Brain, Gall Bladder and Rectum radiation therapy, We compared the cover change, maximum dose, Homogenicity Index and Conformity Index of PTV and also compared the maximum dose and average dose change of Organ At Risk by organizing treatment plans that are not applied overlaped PTV and treatment plans that are applied overlaped PTV in areas where coverage is insufficient. Results: overage of treatment plans with overlapping PTVs was increased in all patients, and overall coverage was also increased in each of the four patients. The maximum dose for PTV was increased in five patients, and the Homogenicity Index and Conformity Index for all patients did not differ much. The maximum dose of the lens was increased by 1.12 times, and the maximum dose was decreased in two patients for brain stem. The mean dose of the eyeball was increased by a maximum of 1.15 times, and there was no significant difference between both parotid gland. In case of gallbladder cancer patients, the mean dose in the liver and colon was decreased, and the mean dose in the duodenum was increased. In the case of rectal cancer patients, the mean dose was reduced for both femur and bladder set as OARs. The overall MU was shown to be similar in four patients, excluding one. Conclusion: If the critical dose of OAR is considered and used properly, I think it is a useful way to improve coverage of PTV.

Radiosurgical Considerations in the Treatment of Large Cerebral Arteriovenous Malformations

  • Lee, Sung-Ho;Lim, Young-Jin;Choi, Seok-Keun;Kim, Tae-Sung;Rhee, Bong-Arm
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.378-384
    • /
    • 2009
  • Objective : In order to establish the role of Gamma Knife radiosurgery (GKS) in large intracranial arteriovenous malformations (AVMs), we analyzed clinical characteristics, radiological features, and radiosurgical outcomes. Methods : Between March 1992 and March 2005, 28 of 33 patients with large AVMs (> $10\;cm^3$ in nidus-volume) who were treated with GKS underwent single session radiosurgery (RS), and the other 5 patients underwent staged volumetric RS. Retrospectively collected data were available in 23 cases. We analyzed treatment outcomes in each subdivided groups and according to the AVM sizes. We compared the estimated volume, defined as primarily estimated nidus volume using MR images, with real target volume after excluding draining veins and feeding arteries embedded into the nidus. Results : Regarding those patients who underwent single session RS, 44.4% (8/18) had complete obliteration; regarding staged volumetric RS, the obliteration rate was 40% (2/5). The complete obliteration rate was 60% (6/10) in the smaller nidus group ($10-15\;cm^3$ size), and 25% (2/8) in the larger nidus group (over $15\;cm^3$ size). One case of cerebral edema and two cases (8.7%) of hemorrhage were seen during the latent period. The mean real target volume for 18 single sessions of RS was $17.1\;cm^3$ ($10.1-38.4\;cm^3$), in contrast with the mean estimated volume of $20.9\;cm^3$ ($12.0-45.0\;cm^3$). Conclusion : The radiosurgical treatment outcomes of large AVMs are generally poor. However, we presume that the recent development in planning software and imaging devices aid more accurate measurement of the nidus volume, therefore improving the treatment outcome.

A Study of volumetric modulated arc therapy for stereotactic body radiation therapy in case of multi-target liver cancer using flattening filter free beam (다중표적 간암의 정위적체부방사선치료에서 무편평화여과기선질 용적변조회전치료의 유용성 평가)

  • Yeom, Misuk;Yoon, Inha;Hong, Donggi;Back, Geummun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • Purpose : Stereotactic body radiation therapy (SBRT) has proved its efficacy in several patient populations with primary and metastatic limited tumors. Because SBRT prescription is high dose level than Conventional radiation therapy. SBRT plan is necessary for effective Organ at risk (OAR) protection and sufficient Planning target volume (PTV) dose coverage. In particular, multi-target cases may result excessive doses to OAR and hot spot due to dose overlap. This study evaluate usefulness of Volumetric modulated arc therapy (VMAT) in dosimetric and technical considerations using Flattening filter free (FFF) beam. Materials and Methods : The treatment plans for five patients, being treated on TrueBeam STx(Varian$^{TM}$, USA) with VMAT using 10MV FFF beam and Standard conformal radiotherapy (CRT) using 15MV Flattening filter (FF) beam. PTV, liver, duodenum, bowel, spinal cord, esophagus, stomach dose were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV was assessed. Total Monitor unit (MU) and beam on time was assessed. Results : Average value of CI, HI and PCI for PTV was $1.381{\pm}0.028$, $1.096{\pm}0.016$, $0.944{\pm}0.473$ in VMAT and $1.381{\pm}0.042$, $1.136{\pm}0.042$, $1.534{\pm}0.465$ in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT. Conclusion : VMAT for SBRT in multi-target liver cancer using FFF beam is effective treatment techniqe in dosimetric and technical considerations. VMAT decrease intra-fraction error due to treatment time shortening using high dose rate of FFF beam.

  • PDF

Effects of Arc Number or Rotation Range upon Dose Distribution at RapidArc Planning for Liver Cancer (간암환자를 대상으로 한 래피드아크 치료계획에서 아크수 및 회전범위가 선량분포에 미치는 영향)

  • Park, Hae-Jin;Kim, Mi-Hwa;Chun, Mi-Son;Oh, Yeong-Teak;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, we evaluated the performance of 3D CRT, IMRT and three kind of RA plannings to investigate the clinical effect of RA with liver cancer case. The patient undergoing liver cancer of small volume and somewhat constant motion were selected. We performed 3D CRT, IMRT and RA plannings such as 2RA, limited triple arcs (3RA) and 3MRA with Eclipse version 8.6.15. The same dose volume objectives were defined for only CTV, PTV and body except heart, liver and partial body in IMRT and RA plannings. The steepness of dose gradient around tumor was determined by the Normal Tissue Objective function with the same parameters in place of respective definitions of dose volume objectives for the normal organs. The approach between the defined dose constraints and the practical DVH of CTV, PTV and Body was the best in 3MRA and the worst in IMRT. The DVHs were almost the same among RAs. Plans were evaluated using Conformity Index (CI), Homogeneity Index (HI) and Quality of coverage (QoC) by RTOG after prescription with dose level surrounding 98% of PTV in the respective plans. As a result, 3MRA planning showed the better favorable indices than that of the others and achieved the lowest MUs. In this study, RA planning is a technique that is possible to obtain the faster and better dose distribution than 3D CRT or IMRT techniques. Our result suggest that 3MRA planning is able to reduce the MUs further, keeping a similar or better targer dose homogeneity, conformity and sparing normal tissue than 2RA or 3RA.

Plan Dose Evaluation of Three Dimensional Conformal Radiotherapy Planning (3D-CRT) of Nasopharyngeal Carcinoma (NPC): Experience of a Tertiary Care University Hospital in Pakistan

  • Abbasi, Ahmed Nadeem;Hafiz, Asim;Ali, Nasir;Khan, Khurshid Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5989-5993
    • /
    • 2013
  • Background: Radiation therapy is the mainstay of treatment for nasopharyngeal carcinoma. Importance of tumor coverage and challenges posed by its unique and critical location are well evident. Therefore we aimed to evaluate our radiation treatment plan through dose volume histograms (DVHs) to find planning target volume (PTV) dose coverage and factors affecting it. Materials and Methods: This retrospective study covered 45 histologically proven nasopharyngeal cancer patients who were treated with definitive 3D-CRT and chemotherapy between Feb 2006 to March 2013 at the Department of Oncology, Section Radiation Oncology, Aga Khan University Hospital, Karachi, Pakistan. DVH was evaluated to find numbers of shrinking field (phases), PTV volume in different phases and its coverage by the 95% isodose lines, along with influencing factors. Results: There were 36 males (80%) and 9 females (20%) in the age range of 12-84 years. Stage IVA (46.7%) was the most common stage followed by stage III (31.1). Eighty six point six-percent received induction, 95.5% received concurrent and 22.2% received adjuvant chemotherapy. The prescribed median radiation dose was 70Gy to primary, 60Gy to clinically positive neck nodes and 50Gy to clinically negative neck regions. Mean dose to spinal cord was 44.2Gy and to optic chiasma was 52Gy. Thirty seven point eight-percent patients completed their treatment in three phases while 62.2% required four to five phases. Mean volume for PTV3 was $247.8cm^3$ (50-644.3), PTV4 $173.8cm^3$ (26.5-345.1) and PTV5 $119.6cm^3$ (18.9-246.1) and PTV volume coverage by 95% isodose lines were 74.4%, 85.7% and 100% respectively. Advanced T stage, intracranial extension and tumor volume > $200cm^3$ were found to be important factors associated with decreased PTV coverage by 95% isodose line. Conclusions: 3D CRT results in adequate PTV dose coverage by 95% isodose line. However advanced T stage, intracranial extension and large target volume require more advanced techniques like IMRT for appropriate PTV coverage.

Determination of Tumor Volume in PET for the Radiation Treatment Planning: Computer Simulation (방사선치료계획을 위한 PET 종양용적 결정 연구: 컴퓨터 모의실험)

  • Yoon Seok Nam;Joh Chul-Woo;Lee Jae Sung
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.183-191
    • /
    • 2005
  • The utilization of PET has been increased so fast since the usefulness of the PET has been proved in various clinical and research fields. Among the many applications, the PET Is especially useful in oncology and most of the clinical PET scans are peformed for the oncologic examination Including the different diagnosis of malignant and benign tumors and assessment of the treatment effects and recurrent tumors. As the PET-CT scanners are widely available, there is Increasing interest in the application of the PET Images to the radiation treatment planning. Although the CT images are conventionally used for the target volume determination in the radiation treatment planning, there are fundamental limitation In use of only the anatomical information. Therefore, the volume determination of the functionally active tumor region using the PET would be important for the treatment planning. However, the accurate determination of the tumor boundary is not simple in PET due to the relatively low spatial resolution of the currently available PET scanners. In this study, computer simulations were peformed to study the relationship between the lesion size, PET resolution, lesion to background ratio and the threshold of Image Intensity to determine the true tumor volume.

  • PDF