• Title/Summary/Keyword: planes

Search Result 1,617, Processing Time 0.033 seconds

THE STUDIES ON THE CHARACTERISTICS IN THE PRIMARY DENTITION (유치치열의 특이성에 대한 고찰)

  • Kim, Jin-Tae;Park, Byoung-Duck;Yoon, Byoung-Ee
    • The Journal of the Korean dental association
    • /
    • v.10 no.6
    • /
    • pp.347-349
    • /
    • 1972
  • The authors selected fifty children aged 2 to 4 years who had normal occlusion from the patients admitted at the Pedodontic Department in the Infirmary of Dental College, S.N.U. Study casts were taken and observed on the primate spaces and terminal planes which are characteristics of primary dentition. The results were as follows: 1. The percentages of terminal planes were 56%±7.02 in mesial step type, 38.0%±6.86 in straight step type, 6.0%±3.36 in distal step type, respectively. 2. The percentages of primate space were 80%±5.09 in maxillary dental arch and 5.0%±7.06 in mandibular dental arch. 3. The percentage of mesial step type in korean children was higher in comparison with that in foreign children and the percentage of the primate space was about the same in korean & foreign children.

  • PDF

Geometric Style and Two-Dimensional Transformation : Alois Riegl's Theory of Visual Perception and Vienna Art Nouveau Architecture (기하양식과 2차원적 각색 : 알로이스 리글(Alois Riegl)의 시지각이론과 비엔나 아르누보 건축)

  • Yim, Seock-Jae
    • Journal of architectural history
    • /
    • v.3 no.2 s.6
    • /
    • pp.125-141
    • /
    • 1994
  • Alois Riegl's aesthetic theory of visual perception provided one of important conceptual backgrounds for Vienna Art Nouveau architecture. Riegls theory of visual perception consists of geometric style and two-dimensional transformation. Riegl's theory of geometric style is based on the modern aesthetic theory of abstraction, which says that the artistic perfection can be obtained not from a direct imitation of natural objects, but from an abstract transformation of them. Riegl's theory of two-dimensional transformation, on the other hand, aims at obtaining artistic perfection by disintegrating volumetric conditions of natural things into planes and combining the planes thus obtained into another new world of art. These two theories of Alois Rigl's provided an important aesthetical background for the design strategy of 'abstract ornamentaion of two-dimension' in Vienna Art Nouveau architecture. This paper is to review the basic concept of Alois Rigl's theory of geometric style and two-dimensional transformation.

  • PDF

A new method of lossless medical image compression (새로운 무손실 의료영상 압축방법)

  • 지창우;박성한
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2750-2767
    • /
    • 1996
  • In this papr, a new lossless compression method is presented based on the Binary Adaptive Arithmetic Coder(BAAC). A simple unbalanced binary tree is created by recursively dividing the BAAC unit interval into two probability sub-inervals. On the tree the More Probable Predicted Value(MPPV) and Less Probable Predicated Value(LPPV) estimated by local statistics of the image pixels are arranged in decreasing order. The BAAC or Huffman coder is thus applied to the branches of the tree. The proposed method allows the coder be directly applied to the full bit-plane medical image without a decomposition of the full bit-planes into a series of binary bit-planes. The use of the full bit model template improves the compresion ratio. In addition, a fast computation for adjusting the interval is possible since a simple arithmetic operation based on probability interval estimation state machine is used for interval sub-division within the BAAC unit interval.

  • PDF

3D Map Building of The Mobile Robot Using Structured Light

  • Lee, Oon-Kyu;Kim, Min-Young;Cho, Hyung-Suck;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.123.1-123
    • /
    • 2001
  • For Autonomous navigation of the mobile robots, the robots' capability to recognize 3D environment is necessary. In this paper, an on-line 3D map building method for autonomous mobile robots is proposed. To get range data on the environment, we use an sensor system which is composed of a structured light and a CCD camera based on optimal triangulation. The structured laser is projected as a horizontal strip on the scene. The sensor system can rotate $\pm$ $30{\Circ}$ with a goniometer. Scanning the system, we get the laser strip image for the environments and update planes composing the environment by some image processing steps. From the laser strip on the captured image, we find a center point of each column, and make line segments through blobbing these center poings. Then, the planes of the environments are updated. These steps are done on-line in scanning phase. With the proposed method, we can efficiently get a 3D map about the structured environment.

  • PDF

A study on the virtual indoor Scene navigation

  • Kim, Yeong-Seok;Jho, Cheung-Woon;Yoon, Kyung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.153.5-153
    • /
    • 2001
  • This paper presents a simple modeling system that constructs 3D models from an indoor cylindrical environment map using all of the available geometry of the interior structure such as vertical and horizontal lines and parallel and perpendicular planes. The indoor scene abstract model is created through this system and the navigation through the process of 3D reconstruction. This system first automatically detects the vanishing points in a cylindrical environment map from parallel lines and planes, and determines the indoor scene topology previously defined using this information. The determined topology enables he user intervention UI simply construct a 3D model by using the photogrammetry. The modeling system can be ...

  • PDF

3D Map Building of the Mobile Robot Using Structured Light

  • Lee, Oon-Kyu;Kim, Min-Young;Cho, Hyung-Suck;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.123.5-123
    • /
    • 2001
  • For autonomous navigation of the mobile robots, the robots' capability to recognize 3D environment is necessary. In this paper, an on-line 3D map building method for autonomous mobile robots is proposed. To get range data on the environment, we use a sensor system which is composed of a structured light and a CCD camera based on optimal triangulation. The structured laser is projected as a horizontal strip on the scene. The sensor system can rotate$\pm$30$^{\circ}$ with a goniometer. Scanning the system, we get the laser strip image for the environments and update planes composing the environment by some image processing steps. From the laser strip on the captured image, we find a center point of each column, and make line segments through blobbing these center points. Then, the planes of the environments are updated. These steps are done on-line in scanning phase. With the proposed method, we can efficiently get a 3D map about the structured environment.

  • PDF

The calibration of a laser profiling system for seafloor micro-topography measurements

  • Loeffler, Kathryn R.;Chotiros, Nicholas P.
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.195-205
    • /
    • 2011
  • A method for calibrating a laser profiling system for seafloor micro-topography measurements is described. The system consists of a digital camera and an arrangement of six red lasers that are mounted as a unit on a remotely operated vehicle (ROV). The lasers project as parallel planes onto the seafloor, creating profiles of the local topography that are interpreted from the digital camera image. The goal of the calibration was to determine the plane equations for the six lasers relative to the camera. This was accomplished in two stages. First, distortions in the digital image were corrected using an interpolation method based on a virtual pinhole camera model. Then, the laser planes were determined according to their intersections with a calibration target. The position and orientation of the target were obtained by a registration process. The selection of the target shape and size was found to be critical to a successful calibration at sea, due to the limitations in the manoeuvrability of the ROV.

Obstacle Detection for Generating the Motion of Humanoid Robot (휴머노이드 로봇의 움직임 생성을 위한 장애물 인식방법)

  • Park, Chan-Soo;Kim, Doik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1115-1121
    • /
    • 2012
  • This paper proposes a method to extract accurate plane of an object in unstructured environment for a humanoid robot by using a laser scanner. By panning and tilting 2D laser scanner installed on the head of a humanoid robot, 3D depth map of unstructured environment is generated. After generating the 3D depth map around a robot, the proposed plane extraction method is applied to the 3D depth map. By using the hierarchical clustering method, points on the same plane are extracted from the point cloud in the 3D depth map. After segmenting the plane from the point cloud, dimensions of the planes are calculated. The accuracy of the extracted plane is evaluated with experimental results, which show the effectiveness of the proposed method to extract planes around a humanoid robot in unstructured environment.

Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring (접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석)

  • 김민규;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

Enhanced RGB Video Coding Based on Correlation in the Adjacent Block (인접블록의 상관관계에 기반한 RGB video coding 개선 알고리즘)

  • Kim, Yang-Soo;Jeong, Jin-Woo;Choe, Yoon-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2538-2541
    • /
    • 2009
  • H.264/AVC High 4:4:4 Intra/Predictive profiles supports RGB 4:4:4 sequences for high fidelity video. RGB color planes rather than YCbCr color planes are preferred by high-fidelity video applications such as digital cinema, medical imaging, and UHDTV. Several RGB coding tools have therefore been developed to improve the coding efficiency of RGB video. In this paper, we propose a new method to extract more accurate correlation parameters for inter-plane prediction. We use a searching method to determine the matched macroblock (MB) that has a similar inter-color relation to the current MB. Using this block, we can infer more accurate correlation parameters to predict chroma MB from luma MB. Our proposed inter-plane prediction mode shows an average bits saving of 15.6% and a PSNR increase of 0.99 dB compared with H.264 high4:4:4 intra-profile RGB coding. Furthermore, extensive performance evaluation revealed that our proposed algorithm has better coding efficiency than existing algorithms..