• 제목/요약/키워드: planar stack

Search Result 45, Processing Time 0.027 seconds

Pressure Distribution Simulation on Geometrical Manifolds Structure for Fabrication of a Planar-type Fuel-Cell Stack (평판형 연료전지 스택의 제조를 위한 매니폴드 형상별 압력분포 시뮬레이션)

  • Park, Se-Joon;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.609-614
    • /
    • 2009
  • A fuel-cell power system among various alternative power sources has many advantages such as comparatively independable circumstances, high-efficient, and heat-recyclable, thus it is now able to be up to hundreds MWh-scaled through improving feasibility and longevity of it. During the last few decades, numerous research results has been investigated to expand interest in fuel-cell technology. This study presents pressure distribution on the geometrical manifold structures, which are U-type and Z-type, of a planar-type fuel-cell stack by simulated with computational fluid dynamics(CFD). Then, electrical performance of a 200W fuel-cell stack, which is U-type, was diagnosed after pre-conditioning operation. The stack has electrical characteristics ; 22V, 10A, 220W, and current density $200mA/cm^2$.

Miniature planar stack using the flexible Printed Circuit Board as current collectors (연성 기판을 전류 집전체로 사용한 평판형 연료전지 스택)

  • Kim, Sung-Han;Cha, Hye-Yeon;Miesse, Craig M.;Cha, Suk-Won;Jang, Jae-Hyuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.1-4
    • /
    • 2008
  • Fuel cells have the potential of providing several times higher energy storage densities than those possible using current state-of-the-art lithium-ion batteries, but current energy density of fuel cell system is not better than that of lithium-ion batteries. To achieve the high energy density, volume and weight of fuel cell system need to be reduced by miniaturizing system components such as stack, fuel tank, and balance-of-plant. In this paper, the thin flexible PCB (Printed circuit board) is used as a current collector to reduce the stack volume. Two end plates are made from light weight aluminum alloy plate. The plate surface is wholly oxidized through the anodizing treatment for electrical insulation. The opening rate of cathode plate hole is optimized through unit cell performance measurement of various opening rates. The performances are measured at room temperature and ambient pressure condition without any repulsive air supply. The active area of MEA is 10.08 $cm^2$ and active area per a unit cell is 1.68 $cm^2$. The peak power density is about 210 mW/$cm^2$ and the air-breathing planar stack of 2 Wis achieved as a small volume of 18 cc.

  • PDF

Joining of Lanthanum Chromite and Yttria Stabilized Zirconia in Sealing of Planar Solid Oxide Fuel Cell

  • Lee, You-Kee;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.741-749
    • /
    • 1994
  • The planar solid oxide fuel cell(SOFC) contains several ceramic materials depending on its structure and has rdfractory metal parts for manifolds, shrouds and current leads. Among ceramic materials for planar SOFC, joining of lanthanum chromite separator and yttria stabilized zirconia(YSZ) electoyte in planar SOFC stack to give strong gas tight seals is necessary for satisfactory operation and high performance. Nevertheless, for planar SOFC/sub s/, how to seal the cell stack and gas manifold remains as one of the unsolved problems. Therefore, in this study. we investigated the joining of sintered lanthanum chromite and YSZ pellets using unsintered lanthanum chromite green films as sealent. Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) revealed that Ca in the sealing material diffused and dissolved into YSZ and sintered lanthanum chromite, and unsintered lanthanum chromite green films reacted with YSZ to from a new phase at the interface. Also, the densification of unsintered lanthanum chromite green films was inpeded by the Ca migration.

  • PDF

Development of SPM Dynamic Analysis Software (SPM의 동적해석 S/W 개발)

  • 이문성;김진석;조철희;홍성근;정광식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.84-89
    • /
    • 2000
  • Thermal simulation of typical stack-type and newly proposed planar-type micro-gas sensors were studied by FEM method. The thermal analyses for the proposed planar structure including temperatur distribution over the sensing layer and power consumption of the heater were carried using finite element method by computer simulation and well compared with those of typical stack-type micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of a actual device to investigate the acceptability of the computer simulation.

  • PDF

Bi-layer Electrolyte for Preventing Solid Oxide Fuel Cell Stack Degradation (고체산화물 연료전지 스택 열화 방지를 위한 전해질 기술)

  • Park, Mi Young;Bae, Hongyeul;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.289-294
    • /
    • 2014
  • The stability of a solid oxide fuel cell (SOFC) stack is strongly dependent on the magnitude and profile of the internal chemical potential of the solid electrolyte. If the internal partial pressure is too high, the electrolyte can be delaminated from the electrodes. The formation of high internal pressure is attributed to a negative cell voltage, and this phenomenon can occur in a bad cell (with higher resistance) in a stack. This fact implies that the internal chemical potential plays an important role in determining the lifetime of a stack. In the present work, we fabricate planar type anode-supported cells ($25cm^2$) with a bi-layer electrolyte (with locally increased electronic conduction at the anode side) to prevent high internal pressure, and we test the fabricated cells under a negative voltage condition. The results indicate that the addition of electronic conduction in the electrolyte can effectively depress internal pressure and improve the cell stability.

Current Status of SOFC Materials and Processing Core Technology (고체산화물 연료전지 소재공정 요소기술 개발 현황)

  • Lee, Jong-Ho;Son, Jiwon;Kim, Heryong;Kim, Byong-Kook;Lee, Hae-Weon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.123.1-123.1
    • /
    • 2010
  • The solid oxide fuel cell (SOFC) has attracted great deal of attention due to its high electrical efficiency, high waste-heat utilization, fuel flexibility, and application versatility. However, SOFC technology is still not matured enough to fulfill the practical requirements for commercialization. Therefore, all the research and development activities are mainly focused on a development of practically viable SOFCs with higher performance and better reliability. We were successful in fabricating high-performance anode-supported unit cells by employing hierarchically controlled multi-layered electrodes for both structural reliability and high performance. In addition, a novel composite sealing gasket made it possible to achieve excellent sealing integrity even with considerable surface irregularities in a multi-cell planar arrayed stack.

  • PDF

Performance Simulation of Planar Solid Oxide Fuel Cells Characteristics: Computational Fluid Dynamics (전산 유체 모델링을 이용한 평판형 고체산화물 연료전지 작동특성 전산모사)

  • Woo Hyo Sang;Chung Yong-Chae
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • To correctly simulate performance characteristics of fuel cells with a modeling method, various physical and chemical phenomena must be considered in fuel cells. In this study, performance characteristics of planar solid oxide fuel cells were simulated by a commercial CFD code, CFD-ACE+. Through simultaneous considerations for mass transfer, heat transfer and charge movement according to electrochemical reactions in the 3-dimensional planar SOFC unit stack, we could successfully predict performance characteristics of solid oxide fuel cells under operation for structural and progress variables. In other words, we solved mass fraction distribution of reactants and products for diffusion and movement, and investigated qualitative and quantitative analysis for performance characteristics in the SOFC unit stack through internal temperature distribution and polarization curve for electrical characteristics. Through this study, we could effectively predict performance characteristics with variables in the unit stack of planar SOFCs and present systematic approach for SOFCs under operation by computer simulation.

Operation Characteristics of 500W Class Anode Support Planar SOFC Stack (500W급 연료극 지지체 평판형 SOFC 스택의 운전특성)

  • Lim Tak-Hyoung;Song Rak-Hyun;Shin Dong-Ryul;Yang Jung-Il;Jeong Hun;Vinke I.C.
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.44-49
    • /
    • 2006
  • 본 연구는 독일 율리히 연구소에서 도입된 면적 200mm*200mm의 연료극 지지체 평판형 SOFC 셀 및 금속 분리판 5장을 적층하여 500W급 SOFC 스택을 제작하고, 이러한 스택의 운전특성을 분석한 연구이다. 도입된 500W급 SOFC 스택은 가스터빈-연료전지 하이브리드 시스템어에 사용되는 5kW급 SOFC 스택의 예비실험을 위한 것으로서, 본 연구의 목적은 상압 운전특성을 바탕으로 외국에서 시도된 적이 없는 평판형 SOFC 스택의 가압 운전기술을 확보하는 것이다. 이러한 목적을 위해 본 연구에서는 상압형 500W급 SOFC 발전시스템에 대한 구성과 설계, 전반적인 운전 특성평가 (5셀 스택 운전, 연료 전환 $(H_2{\rightarrow}pre-reformed\;gas)$, 500 시간 연속운전 등)가 이뤄졌다.

  • PDF

Home-built Solid-state NMR Probe for Membrane Protein Studies

  • Kim, Yong-Ae;Hwang, Jung-Hyun;Park, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1281-1283
    • /
    • 2003
  • Proteins in highly oriented lipid bilayer samples are useful to study membrane protein structure determination. Planar lipid bilayers aligned and supported on glass slide were prepared. These stack of glass slide with planar lipid bilayers are not well fit for commercial solid-state NMR probe with round coil. Therefore, homebuilt solid-state NMR probe was built and used for a stack of thin glass plates and RF coil is wrapping directly around the flat square sample. The overall filling factor of the coil is much better and the large surface area enhances the extent to orientation by providing uniform environments for the phospholipids and the high ratio of circumference to area reduces edge effects. $^1H\;and\;^{15}N$ double resonance probe for 400 MHz NMR (9.4T) with a flat coil (coil size: 11 mm ${\times}$ 20 mm ${\times}$ 4 mm) is constructed and tested.

Thermal Analysis of Silicon Micro-Gas Sensor (실리콘 마이크로 가스센서의 열해석)

  • 정완영;엄구남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.567-570
    • /
    • 2000
  • Thermal simulation of typical stack-type and newly proposed planar-type micro-gas sensors were studied by FEM method. the thermal analysis for the proposed planar structure including temperature distribution over the sensing layer and power consumption of the heater were carried using finite element method by computer simulation and well compared with those of typical stack-type micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of an actual device to investigate the acceptability of the computer simulation.

  • PDF