• Title/Summary/Keyword: planar dipole antenna

Search Result 51, Processing Time 0.029 seconds

Development of Ultra-Wideband Antennas

  • Chen, Zhi Ning
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2013
  • The ultra-wideband (UWB) spectrum available for commercial applications has offered us an opportunity to achieve high-speed wireless communications and high-accuracy location applications. As one of key research areas in UWB technology, a lot of innovative broadband and miniaturization techniques for UWB antennas have been greatly invented and developed for years. This paper reviews the development of UWB antenna design in the past decade. Starting with a brief introduction of the specific requirements and promising applications of UWB systems, the unique design challenges of UWB antennas are highlighted. Next, the important milestones of UWB antenna designs are briefed. After that, a variety of planar UWB antennas invented for broadband operation, miniaturization, and multiple functions are introduced. Last, the comments on the development of UWB antennas in future are shared.

Study on a Novel Feeding Method for Broadband Yagi Antenna for DTV (DTV용 광대역 야기 안테나 새로운 급전방법 연구)

  • Lee, Jong-Ig;Park, Jin-Taek;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.475-476
    • /
    • 2015
  • In this paper, we introduce a novel feeding method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) receiving. The balun between the balanced coplanar strip (CPS) line feeding the driver dipole and the unblanaced microstrip line is a rectangular patch inserted into the CPS line along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. The effects of various geometrical parameters and balun on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV.

  • PDF

A Study on Microstrip Log-Periodic Antenna for Receiving the Direct Broadcasting Satellite(DBS) Signal (위성방송 수신을 위한 대수주기 마이크로스트립 안테나에 대한 연구)

  • Jang, Won-Ho;Jin, Jae-Sun;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • In this study, we provide a single element log-periodic antenna that the feeding networks and array structures are aperture coupled and series dipole array type. We made the antenna for direct receiving the Moogoongwha satellite broadcasting signal. The transmission power was able to feed the patch dipole in series due to lay perpendicularly 8 series patch dipole on tapered slot. The patch dipole radiation pattern which fed in series power, make the main beam direction up $37^{\circ}{\sim}42^{\circ}$ within the BS/CS bandwidth. The main beam gain was measured 9.31~11.03 dBi. Using 32 elements to array the elements properly, we acquire $4{\times}8$ array structure on limited PCB board. As a result, it has been found that the new planar DBS antenna structure have high gain over 10dBi and acceptable elevation angle over 42 degree, and we can apply this result to commercial DBS reception antenna manufacturing.

  • PDF

A Study on Parabolic Edge Planar Monopole Antenna for UWB Communication (초광대역(UWB) 통신을 위한 포물선 엣지 형태의 평면 모노폴 안테나에 대한 연구)

  • Chang, Tae-Soon;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.612-620
    • /
    • 2008
  • In this parer, parabolic edge planar monopole antenna for UWB communication is presented. The antenna have broadband property structurally through planar monopole and ground which have parabolic edge. It is designed close to self-complementary structure as changing curvature of edge of monopole and ground. Monopole and ground of proposed antenna exist on coplanar plane, and excite as coaxial feeding. It used FR4 dielectric substrate of ${\varepsilon}_r=4.4$, and the size is $26{\times}31{\times}1.6mm$. Return loss is more than 10 dB in $3.1{\sim}10.6GHz$. Radiation pattern is about the same that of dipole antenna at all frequency. At measured result, max gain is $1.37{\sim}6.02dBi$ at E-plane.

A Study on Inverted Triangle Structural Planar Monopole Antenna with Edge (에지를 가진 역삼각형 구조 평면 모노폴 안테나에 대한 연구)

  • Choi, Hong-Ju;Lee, Yun-Min;Oh, Kyu-Jong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.549-555
    • /
    • 2011
  • In this paper, inverted triangle structural planar monopole antenna with Edge for UWB Communication (3.1 ~ 10.6 GHz) is presented. The antenna have broadband property structurally through inverted triangle structural planar monopole which have edge. Monopole and ground of proposed antenna exist on coplanar plane, and excite as CPW. It used FR4 dielectric substrate of ${\epsilon}_r=4.4$, and the size is $20{\times}20{\times}1.6mm$. Return loss is more than - 10dB in 3.1 ~ 10.1 GHz (7.0 GHz). Radiation pattern is about the same that of dipole antenna at all frequency. At measured result, max gain is 8.44 dBi at E - plane.

Design and Implementation of Dual Wideband Dipole Type Antenna for the Reception of S-DMB and 2.4/5 GHz WLAN Signals (S-DMB와 2.4/5 GHz WLAN 신호 수신을 위한 이중 광대역 다이폴형 안테나의 설계 및 구현)

  • Kim, Sung-Min;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1021-1029
    • /
    • 2006
  • In this paper, we designed and implemented a dual wideband dipole type antenna for the reception of S-DMB (Satellite Digital Multimedia Broadcasting) and 2.4/5 GHz WLAN(Wireless Local Area Network) signals. The proposed antenna based on conventional monopole type dual band antenna was implemented as planar wideband dipole type antenna with the volume of $8{\times}33.8{\times}1.68mm^3$. The proposed antenna is printed type on FR4 substrate of 1.6 mm thick and composed of a dipole type antenna for low frequency band and two symmetric structured resonance elements for high frequency band. We confirmed antenna area with dense surface current for each frequency band with simulation. By varying the length of the antenna area with dense surface current, we could vary resonance frequency of each frequency band separately. Impedance bandwidths$(VSWR{\leq}2)$ are 362 MHz(14.23 %) for 2 GHz band and 1188 MHz(22.13, %) for 5 GHz band which show wideband characteristic. Measured maximum gains were 4.33 dBi for 2 GHz band and 5.48 dBi for 5 GHz band which showed improved performance. And the implemented antenna has a good omni-directional radiation pattern characteristic.

Design of an Ultra-Wideband LPDA Antenna for the Feeder of an Airborne Spinning Direction-Finding Reflector Antenna (공중 회전 방향탐지 반사판 안테나 급전기용 초광대역 LPDA 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.653-659
    • /
    • 2016
  • This paper proposes an ultra-wideband Log-Periodic Dipole Array(LPDA) antenna for the feeder of a reflector antenna to be used for airborne spinning direction-finding and detecting wideband signals. To obtain the ultra-wideband characteristics over the 20:1 bandwidth from S to Ka band, the radiation elements of the antenna were printed on a substrate and a wedge-typed dielectric supporter with robust structure was inserted between the substrates. Also, the center portion of the supporter was replaced by a styrofoam material to reduce the supporter weight. The 5-dB return loss of the designed LPDA antenna showed ultra-wideband characteristics, which are 37.57:1(1.09~40.95 GHz) in the simulation and 33.85:1(1.31~44.35 GHz) in the measurement. We achieved the required gains of 5.78 dBi in the simulation and 5.76 dBi in the measurement in the operating band. The proposed robust, light-weight, and ultra-wideband LPDA antenna confirmed that it can be applied for airborne applications.

Four-Elements L-Shaped Slot Array Monopole Antenna with Dipole-like Radiation Pattern (다이폴형 방사 패턴을 갖는 4소자 L-슬롯 배열 모노폴 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • In this paper, an antenna which has dipole-like radiation pattern and low profile is proposed. The antenna is composed of four elements slot array based on L-shaped 0.43 $\lambda_g$ slot element. It presents a omni-directional radiation patter in the azimuth plane and has a null toward broad-side direction. In the design, a small mono-pole antenna which acts as a large capacitance element, combined with the partially removed ground plane by four L-shaped slots. As a result, these structure act as a LC resonator for radiation. The measured result shows, the impedance bandwidth(VSWR$\leq$2) of the proposed antenna is 60 MHz(2.35$\sim$2.41 GHz). The measured maximum radiation gain and efficiency of proposed antenna is 0.02 dBi, 56.7 % at center frequency 2.38 GHz, respectively. The proposed antenna can be applied to wireless tan access point system.

Compact Half Bow-tie-type Quasi-Yagi Antenna for Terrestrial DTV Reception (지상파 디지털 방송 수신용 소형 반 보우 타이 형 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1908-1914
    • /
    • 2013
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The coplanar strip line which feeds the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type rectangular director at a location close to the driver dipole, broadband impedance matching and gain enhancement in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bow-tie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as a design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a good performance such as a frequency band of 450-848 MHz for a VSWR < 2, gain > 4.1 dBi, and front-to-back ratio > 10.4 dB.

Optimization Design in Time Domain on Impulse GPIR System (임펄스 GPIR시스템의 시간영역 최적화 설계)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • In this paper, system optimization design technique of an impulse ground penetrating image radar (GPIR) in time domain is proposed to improve depth resolution of the system. For the purpose, time domain analysis method of key components such as impulse generator and UWB antenna is explained and by simulation, parameters of each component are determined. In particular, by standardizing the impulse signal, spectrum efficiency of a radiated impulse signal is improved and a U-shaped planar dipole antenna for a UWB antenna is developed. By equipping a parabolic metal reflector with the proposed antenna, external noise is prevented and the ability of radiating an input impulse into ground is improved. In addition, to remove ringing effect of the propose antenna which causes serious degradation of the system performance, resistors are loaded at the edge of the antenna and then Tx and Rx UWB antennas are optimized by simulation in time domain. For images of targets buried under the ground migration technique is applied and influence of tough ground surface on distortion of received impulse signals is reduced using technique of noise and signal distortion reduction in time domain and its time resolution is enhanced. To verify the design optimization procedure, a prototype of an GPIR and an artificial test field are made. Measurement results show that the resolution of the system designed is as good as that of a theoretical model.