• Title/Summary/Keyword: planar core

Search Result 95, Processing Time 0.024 seconds

A Study on Gerotor Design with Optimum Tip Clearance for Low Speed High Torque Gerotor Hydraulic Motor (저속 고토오크 제로터 유압모터의 최적 이 끝 틈새를 갖는 제로터 설계 연구)

  • Seo, J.S.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • Gerotor hydraulic motor is widely used in hydraulic systems due to its low speed, high torque output and compactness in rotational direct driving of a heavy weight. Gerotor is a Planar mechanism consisted of a pair of rotor and circular teeth of stator assembly which forms a closed space, so called a chamber. The motion of rotor relative to the circular tooth is produced by the pressure difference of hydraulic operating fluid between the adjacent chamber. As all active contact points of rotor and circular teeth are subjected to very high sliding friction, a reduction in the performance of the gerotor hydraulic motor can not be avoided. Therefore, the core design parameters of gerotor profile used in hydraulic motors is to minimize a friction force by high contact stresses. The analytical design method of gerotor profile, based on envelope of a family of curves, is proposed. In this study, the influence of the tip clearances on three critical contact points between rotor and circular teeth of stator assembly has been explored by experimental data in this paper. At the same time a improvement method to reduce the friction force is proposed and the tip clearances on three critical points for getting an optimum gerotor profile are also analyzed.

  • PDF

3D Segmentation for High-Resolution Image Datasets Using a Commercial Editing Tool in the IoT Environment

  • Kwon, Koojoo;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1126-1134
    • /
    • 2017
  • A variety of medical service applications in the field of the Internet of Things (IoT) are being studied. Segmentation is important to identify meaningful regions in images and is also required in 3D images. Previous methods have been based on gray value and shape. The Visible Korean dataset consists of serially sectioned high-resolution color images. Unlike computed tomography or magnetic resonance images, automatic segmentation of color images is difficult because detecting an object's boundaries in colored images is very difficult compared to grayscale images. Therefore, skilled anatomists usually segment color images manually or semi-automatically. We present an out-of-core 3D segmentation method for large-scale image datasets. Our method can segment significant regions in the coronal and sagittal planes, as well as the axial plane, to produce a 3D image. Our system verifies the result interactively with a multi-planar reconstruction view and a 3D view. Our system can be used to train unskilled anatomists and medical students. It is also possible for a skilled anatomist to segment an image remotely since it is difficult to transfer such large amounts of data.

The Analysis of tight Coupling and Propagation for a Composite Fiber-Dielectric Slab with a Conductor Cladding

  • Kwon, Kwang-Hee;Song, Jae-Won;Kim, Jeong-Hoon;Park, Euy-Don;Son, Seok-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • A theoretical presentation of evanescent coupling is offered with respect to the refractive indexes between a side-polished optical fiber and an infinitely planar waveguide with a conductor cladding (PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with the perfect conductor (PEC) on one side. The behavior of the distributed couple. is examined using a coupled mode model, which takes account of the two dimensions of the waveguide configuration. The coupling and propagation of light were found to depend on both the relationship between the refractive index values of each structure and the configuration of the side-polished fiber used in the PWGCC. The spreading of light in the unconfined direction of the PWGCC is described in terms of a simple geometrical interpretation of the synchronization condition that is in agreement with a previous investigation of the problem based on the coupled-mode theory (CMT). The power of the light propagation in the fiber decreased exponentially along the fiber axis as it was transferred to the PWGCC, where it was carried away.

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation

  • Yoon, Jooil;Lee, Hyun Chul;Joo, Han Gyu;Kim, Hyeong Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3543-3562
    • /
    • 2021
  • The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.

Design and Impact Testing of Cylindrical Composite Antenna Structures (원통형 복합재료 안테나의 설계 및 충격 실험에 관한 연구)

  • Lee, Sang-Min;Cho, Sang-Hyun;Lee, Chang-Woo;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.55-59
    • /
    • 2009
  • Microstrip antennas are low profile, are conformable to planar and nonplanar surfaces, are simple and inexpensive to manufacture, mechanically robust when mounted on rigid surfaces and are compatible with MMIC(Monolithic microwave integrated circuit) designs; they have been used in diverse communication systems. The rectangular microstrip patch antenna is designed for a central frequency of 12.5 GHz, and the final product is a $4{\times}1$ array antenna with curvature radius of 200 mm. The microstrip antenna is embedded in a sandwich structure which consists of skin and core material. After impact, the performance of damaged antenna is estimated by measuring the return loss and radiation pattern. The antenna performance was not affected by this impact damage.

SDR Based Modulation Performance of RF Signal under Different Communication Channel

  • Shabana Habib
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.182-188
    • /
    • 2024
  • Hardware components are an integral part of Hardware Define Radio (HDR) for seamless operations and optimal performance. On the other hand, Software Define Radio (SDR) is a program that does not rely on any hardware components for its performance. Both of the latter radio programmers utilize modulation functions to make their core components from signal processing viewpoint. The following paper concentrates on SDR based modulation and their performance under different modulations. The bit error rate (BER) of modulations such as PSK, QAM, and PSAM were used as indicators to test channel quality estimation in planar Rayleigh fading. Though it is not commonly used for channel fading, the method of the adder determines the regionally segmented channel fading. Thus, the estimation error of the channel change substantially reduces the performance of the signal, hence, proving to be an effective option. Moreover, this paper also elaborates that BER is calculated as a function of the sample size (signal length) with an average of 20 decibels. Consequently, the size of the results for different modulation schemes has been explored. The analytical results through derivations have been verified through computer simulation. The results focused on parameters of amplitude estimation error for 1dB reduction in the average signal-to-noise ratio, while the combined amplitude deviation estimation error results are obtained for a 3.5 dB reduction

A Micro Fluxgate Magnetic Sensor with Closed Magnetic Path (폐자로를 형성한 마이크로 플럭스게이트 자기 센서)

  • 최원열;황준식;강명삼;최상언
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.19-23
    • /
    • 2002
  • This paper presents a micro fluxgate magnetic sensor in printed circuit board (PCB). In order to observe the effect of the closed magnetic path, the magnetic cores of rectangular-ring and two bars were each fabricated. Each fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a Co-based amorphous magnetic ribbon with extremely high DC permeability of ~100,000. Four outer layers as an excitation and pick-up coils have a planar solenoid and are made of copper foil. In case of the fluxgate sensor having the rectangular-ring shaped core, excellent linear response over the range of -100 $\mu$T to + 100 $\mu$T is obtained with 540 V/Tsensitivity at excitation square wave of 3 $V_{p-p}$ and 360 KHz. The chip size of the fabricated sensing element is $7.3 \times 5.7\textrm{mm}^2$. The very low power consumption of ~8 mW was measured. This magnetic sensor is very useful for various applications such as: portable navigation systems, telematics, VR game and so on.n.

  • PDF

Segmentation of Airborne LIDAR Data: From Points to Patches (항공 라이다 데이터의 분할: 점에서 패치로)

  • Lee Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.111-121
    • /
    • 2006
  • Recently, many studies have been performed to apply airborne LIDAR data to extracting urban models. In order to model efficiently the man-made objects which are the main components of these urban models, it is important to extract automatically planar patches from the set of the measured three-dimensional points. Although some research has been carried out for their automatic extraction, no method published yet is sufficiently satisfied in terms of the accuracy and completeness of the segmentation results and their computational efficiency. This study thus aimed to developing an efficient approach to automatic segmentation of planar patches from the three-dimensional points acquired by an airborne LIDAR system. The proposed method consists of establishing adjacency between three-dimensional points, grouping small number of points into seed patches, and growing the seed patches into surface patches. The core features of this method are to improve the segmentation results by employing the variable threshold value repeatedly updated through a statistical analysis during the patch growing process, and to achieve high computational efficiency using priority heaps and sequential least squares adjustment. The proposed method was applied to real LIDAR data to evaluate the performance. Using the proposed method, LIDAR data composed of huge number of three dimensional points can be converted into a set of surface patches which are more explicit and robust descriptions. This intermediate converting process can be effectively used to solve object recognition problems such as building extraction.

Encapsulation and optical properties of Er3+ ions for planar optical amplifiers via sol-gel process (졸-겔법을 이용한 광증폭기의 Er 이온 캡슐화 및 광학적 특성)

  • Kim, Joo-Hyeun;Seok, Sang-Il;Ahn, Bok-Yeop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.135-135
    • /
    • 2003
  • The fast evolution in the fold of optical communication systems demands powerful optical information treatment. These functions can be performed by integrated optical systems. A key component of such systems is erbium doped waveguide amplifier(EDWA). The intra 4f radiative transition of Er at 1.5 $\mu\textrm{m}$ is particularly interesting because this wavelength is standard in optical telecommunications. The fabrication of waveguide amplifier for integrated optics using sol-gel process has received an increasing attention. Potential advantage of lower cost by less capital equipment and easy processing makes this process an attractive alternatives to conventional technologies like flame hydrolysis deposition, ion exchange and chemical vapor deposition, etc. In addition, sol-gel process has been found to be extremely suitable for the control of composition and refractive index related directly with optical properties. The main drawback of such an amplifier with respect to the EDWA is the need for a much higher Er3+ concentration to compensate for the smaller interaction length. However, the high doping of Er might be resulted in the non-radiative relaxation by clustering of Er ions End co-operative upconversion. In order to solve this problem, we investigate the possibility of avoiding short Er-Er distances by encapsulation of Er3+ ions in hosts such as organic-inorganic hybrid materials. For inorganic-organic hybrid sols, methacryloxypropyltrimethoxysilane (MPTS), zirconyl chloride octahydrate and erbium(III) chloride hexahydrate were used as starting materials, followed by conventional sol-gel process. It was observed by TEM that nano sols having core/shell toplology were formed, depending on the mole ratio of Zr/Er. The surface roughness for the coatings on Si substrate was investigated by AFM as a function of Zr/Er ratio. The local environment and vibrational Properties of Er3+ ions were studied using Near-IR, FT-IR, and UV/Vis spectroscopy. Nano hybrid coatings derived from polymer and Er doped encapsulation Eave the good luminescence at 1.55$\mu\textrm{m}$.

  • PDF

Vibration Characteristic Analysis of an Annular Cylindrical PWR Fuel Rod according to the Cross-sectional Dimensions and the Span Length (가압경수로용 환형 실린더 연료봉의 단면치수와 스팬길이에 따른 진동특성해석)

  • Lee, Kang-Hee;Kim, Jae-Yong;Lee, Yung-Ho;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.197-201
    • /
    • 2007
  • Vibration characteristics of an annular cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

  • PDF