• Title/Summary/Keyword: planar Hall effect

Search Result 25, Processing Time 0.026 seconds

Structural and Electrical Properties of Gallium Doped Zinc Oxide Films

  • Song, Pung-Keun;Yuzo Shigesato;Mika Oguchi;Masayuki Kamei;Itaru Yasui
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.404-408
    • /
    • 1999
  • Gallium doped zinc oxide(GZO) films were deposited on soda-lime glass substrates without substrate heating $(T_s<50^{\circ}C$) by dc planar magnetron sputtering using GZO ceramic oxide targe with different inert gas (Ar, or Ne). For the GZO films deposited under different total gas pressure $(P_{tot})$, structural and electrical properties were investigated by XRD and Hall effect measurements. Crystallinity of GZO films deposited using Ar was degraded with increase in $(P_{tot})$, suggesting that it was heavily affected by kinetic energy of sputtered Zn particles$(PA_{zn})$ arriving at substrate surface. Whereas, crystallinity of GZO films deposited at lower Ptot than 3.0 Pa using Ne gas was degraded with decrease in $(P_{tot})$. This degradation was considered to be result of film damage caused by the bombardment of high-energy neutrals ($Ne^{\circ}$). On the basis of a hard sphere collision processes, the average final energy of particles (sputtered Zn, $Ar^{\circ}$and $Ne^{\circ}$)arriving at substrate surface were estimated.

  • PDF

Controlling Structural and Electrical Properties of Pt Nanopowder-Dispersed SiO2 Film (Pt 나노분말이 분산된 SiO2 박막의 구조 및 전기적 특성 제어)

  • Lee, Jae Ho;Shin, In Joo;Lee, Sung Woo;Kim, Hyeong Cheol;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.355-359
    • /
    • 2014
  • Pt nanopowder-dispersed $SiO_2$ (SOP) films were prepared by RF co-sputtering method using Pt and $SiO_2$ targets in Ar atmosphere. The growth rate and Pt content in the film were controlled by means of manipulating the RF power of Pt target while that of $SiO_2$ was fixed. The roughness of the film was increased with increasing the power of Pt target, which was mainly due to the increment of the size and planar density of Pt nanopowder. It was revealed that SOP film formed at 10, 15, 20 W of Pt power contained 2.3, 2.7, and 3.0 nm of spherical Pt nanopowder, respectively. Electrical conductivity of SOP films was exponentially increased with increasing Pt power as one can expect. Interestingly, conductivity of SOP films from Hall effect measurement was greater than that from DC I-V measurement, which was explained by the significant increase of electron density.

Magnetic Sensor-Based Detection of Picoliter Volumes of Magnetic Nanoparticle Droplets in a Microfluidic Chip

  • Jeong, Ilgyo;Eu, Young-Jae;Kim, Kun Woo;Hu, XingHao;Sinha, Brajalal;Kim, CheolGi
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2012
  • We have designed, fabricated and tested an integrated microfluidic chip with a Planar Hall Effect (PHE) sensor. The sensor was constructed by sequentially sputtering Ta/NiFe/Cu/NiFe/IrMn/Ta onto glass. The microfluidic channel was fabricated with poly(dimethylsiloxane) (PDMS) using soft lithography. Magnetic nanoparticles suspended in hexadecane were used as ferrofluid, of which the saturation magnetisation was 3.4 emu/cc. Droplets of ferrofluid were generated in a T-junction of a microfluidic channel after hydrophilic modification of the PDMS. The size and interval of the droplets were regulated by pressure on the ferrofluid channel inlet. The PHE sensor detected the flowing droplets of ferrofluid, as expected from simulation results. The shape of the signal was dependent on both the distance of the magnetic droplet from the sensor and the droplet length. The sensor was able to detect a magnetic moment of $2{\times}10^{-10}$ emu at a distance of 10 ${\mu}m$. This study provides an enhanced understanding of the magnetic parameters of ferrofluid in a microfluidic channel using a PHE sensor and will be used for a sample inlet module inside of integrated magnetic lab-on-a-chip systems for the analysis of biomolecules.

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

Morphological Structural and Electrical Properties of DC Magnetron Sputtered Mo Thin Films for Solar Cell Application

  • Fan, Rong;Jung, Sung-Hee;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.389-389
    • /
    • 2012
  • Molybdenum is one of the most important materials used as a back ohmic contact for $Cu(In,Ga)(Se,S)_2$ (CIGS) solar cells because it has good electrical properties as an inert and mechanically durable substrate during the absorber film growth. Sputter deposition is the common deposition process for Mo thin films. Molybdenum thin films were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering technique. The outdiffusion of Na from the SLG through the Mo film to the CIGS based solar cell, also plays an important role in enhancing the device electrical properties and its performance. The structure, surface morphology and electrical characteristics of Mo thin films are generally dependent on deposition parameters such as DC power, pressure, distance between target and substrate, and deposition temperature. The aim of the present study is to show the resistivity of Mo layers, their crystallinity and morphologies, which are influenced by the substrate temperature. The thickness of Mo films is measured by Tencor-P1 profiler. The crystal structures are analyzed using X-ray diffraction (XRD: X'Pert MPD PRO / Philips). The resistivity of Mo thin films was measured by Hall effect measurement system (HMS-3000/0.55T). The surface morphology and grain shape of the films were examined by field emission scanning electron microscopy (FESEM: Hitachi S-4300). The chemical composition of the films was obtained by the energy dispersive X-ray spectroscopy (EDX). Finally the optimum substrate temperature as well as deposition conditions for Mo thin films will be developed.

  • PDF