• Title/Summary/Keyword: plan-sequence

Search Result 149, Processing Time 0.028 seconds

A Study on Criteria of Selecting Artwork According to Artwork's Location in Architectural Space (건축공간내 미술장식품의 설치위치에 따른 선정요인에 관한 연구)

  • 김남효
    • Korean Institute of Interior Design Journal
    • /
    • no.39
    • /
    • pp.20-27
    • /
    • 2003
  • The purpose of this study is to provide a practical guide for selecting architectural artwork and analyze relationship between artwork and interior space & facade. The problems with many outdoor artwork did not make the characteristics of the specific environment and did not form a big flow in the urban contextualism. Choosing the artwork, architectural environment for artwork is very much part of the designers' task. When artwork is to be specifically acquired for a particular projects, designer and client must work together to make choices and plan placement. The data are collected through evaluation surveys of college students and graduate students majoring in interior architecture & design, and analyzed by using SPSS-WIN program to find the major characterized factors. It is concluded that architectural artwork should be constituted with nine major factors of interior space - theme/scale, situation/contemporay accord, finished materials harmony, line/two-three dimensional form, proportion/rhythm, sequence, natural/artificial form, abstract/reality expression, originality - and eight major factors of facade - situation, abstract/reality expression, finished materials harmony, theme/sequence, natural/artificial form, proportion/rhythm, static/dynamic expression, originality/. contemporay accord.

Generation of Block Assembly Sequence by Case Based Reasoning (사례기반 추론을 이용한 블록조립계획)

  • 신동목;김태운;서윤호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.163-170
    • /
    • 2004
  • In order to automatically determine the sequences of block assembly operations in shipbuilding, a process planning system using case-based reasoning (CBR) is developed. A block-assembly planning problem is modeled as a constraint satisfaction problem where the precedence relations between operations are considered constraints. The process planning system generates an assembly sequence by adapting information such as solutions and constraints collected from similar cases retrieved from the case base. In order to find similar cases, the process planning system first matches the parts of the problem and the parts of each case based on their roles in the assembly, and then it matches the relations related to the parts-pairs. The part involved in more operations are considered more important. The process planning system is applied to simple examples fur verification and comparison.

Task Planning Algorithm with Graph-based State Representation (그래프 기반 상태 표현을 활용한 작업 계획 알고리즘 개발)

  • Seongwan Byeon;Yoonseon Oh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.196-202
    • /
    • 2024
  • The ability to understand given environments and plan a sequence of actions leading to goal state is crucial for personal service robots. With recent advancements in deep learning, numerous studies have proposed methods for state representation in planning. However, previous works lack explicit information about relationships between objects when the state observation is converted to a single visual embedding containing all state information. In this paper, we introduce graph-based state representation that incorporates both object and relationship features. To leverage these advantages in addressing the task planning problem, we propose a Graph Neural Network (GNN)-based subgoal prediction model. This model can extract rich information about object and their interconnected relationships from given state graph. Moreover, a search-based algorithm is integrated with pre-trained subgoal prediction model and state transition module to explore diverse states and find proper sequence of subgoals. The proposed method is trained with synthetic task dataset collected in simulation environment, demonstrating a higher success rate with fewer additional searches compared to baseline methods.

Spatial Scheduling in Shipbuilding Industry

  • Duck Young Yoon;Varghese Ranjan;Koo Chung Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.106-110
    • /
    • 2004
  • In any large heavy industry like that of ship building, there exist a lot of complications for the arrangement of building blocks optimally for the minimal space consumption. The major problem arises at yard because of laxity in space for arranging the building blocks of ship under construction. A standardized erection sequence diagram is generally available to provide the prioritised erection sequence. This erection sequence diagram serves as the frame work. In order to make a timely erection of the blocks a post plan has to be developed so that the blocks lie in the nearest possible vicinity of the material handling devices while keeping the priority of erection. Therefore, the blocks are arranged in the pre-erection area. This kind of readiness of blocks leads to a very complex problem of space. This arises due to the least available space leading to an urgent need of an availability of intelligent spatial schedule without compromising the rate of production. There exists two critical problems ahead namely, the spatial occupation layout of pre-erection area and the emptying pattern in the spatial vicinity. The block shape is assumed be rectangular. The related input data's are the dates of erection (earliest as well as the latest), geometrical parameters of block available on pre-erection area, slack time and the like.

  • PDF

A Domain Action Classification Model Using Conditional Random Fields (Conditional Random Fields를 이용한 영역 행위 분류 모델)

  • Kim, Hark-Soo
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • In a goal-oriented dialogue, speakers' intentions can be represented by domain actions that consist of pairs of a speech act and a concept sequence. Therefore, if we plan to implement an intelligent dialogue system, it is very important to correctly infer the domain actions from surface utterances. In this paper, we propose a statistical model to determine speech acts and concept sequences using conditional random fields at the same time. To avoid biased learning problems, the proposed model uses low-level linguistic features such as lexicals and parts-of-speech. Then, it filters out uninformative features using the chi-square statistic. In the experiments in a schedule arrangement domain, the proposed system showed good performances (the precision of 93.0% on speech act classification and the precision of 90.2% on concept sequence classification).

  • PDF

Integrating Machine Reliability and Preventive Maintenance Planning in Manufacturing Cell Design

  • Das, Kanchan;Lashkari, R.S.;Sengupta, S.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.113-125
    • /
    • 2008
  • This paper presents a model for designing cellular manufacturing systems (CMS) by integrating system cost, machine reliability, and preventive maintenance (PM) planning. In a CMS, a part is processed using alternative process routes, each consisting of a sequence of visits to machines. Thus, a level of 'system reliability' is associated with the machines along the process route assigned to a part type. Assuming machine reliabilities to follow the Weibull distribution, the model assigns the machines to cells, and selects, for each part type, a process route which maximizes the overall system reliability and minimizes the total costs of manufacturing operations, machine underutilization, and inter-cell material handling. The model also incorporates a reliability based PM plan and an algorithm to implement the plan. The algorithm determines effective PM intervals for the CMS machines based on a group maintenance policy and thus minimizes the maintenance costs subject to acceptable machine reliability thresholds. The model is a large mixed integer linear program, and is solved using LINGO. The results point out that integrating PM in the CMS design improves the overall system reliability markedly, and reduces the total costs significantly.

Sequential pattern load modeling and warning-system plan in modular falsework

  • Peng, Jui-Lin;Wu, Cheng-Lung;Chan, Siu-Lai
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.441-468
    • /
    • 2003
  • This paper investigates the structural behavior of modular falsework system under sequential pattern loads. Based on the studies of 25 construction sites, the pattern load sequence modeling is defined as models R (rectangle), L and U. The study focuses on the system critical loads, regions of largest reaction forces, discrepancy between the pattern load and the uniform load, and the warning-system plan. The analysis results show that the critical loads of modular falsework systems with sequential pattern loads are very close to those with the uniform load used in design. The regions of largest reaction forces are smaller than those calculated by the uniform load. However, the regions of largest reaction forces of three models under sequential pattern loads can be considered as the crucial positions of warning-system based on the measured index of loading. The positions of the sensors for the warning-system for these three different models are not identical.

Static analysis of singly and doubly curved panels on rectangular plan-form

  • Bahadur, Rajendra;Upadhyay, A.K.;Shukla, K.K.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.659-670
    • /
    • 2017
  • In the present work, an analytical solution for the static analysis of laminated composites, functionally graded and sandwich singly and doubly curved panels on the rectangular plan-form, subjected to uniformly distributed transverse loading is presented. Mathematical formulation is based on the higher order shear deformation theory and principle of virtual work is applied to derive the equations of equilibrium subjected to small deformation. A solution methodology based on the fast converging finite double Chebyshev series is used to solve the linear partial differential equations along with the simply supported boundary condition. The effect of span to thickness ratio, radius of curvature to span ratio, stacking sequence, power index are investigated. The accuracy of the solution is checked by the convergence study of non-dimensional central deflection and moments. Present results are compared with those available in the literature.

An extension of an improved forced based design procedure for 3D steel structures

  • Peres, R.;Castro, J.M.;Bento, R.
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1115-1140
    • /
    • 2016
  • This paper proposes an extension of the Improved Forced Based Design procedure to 3D steel structures. The Improved Forced Based Design (IFBD) procedure consists of a more rational sequence of the design checks proposed in Eurocode 8 and involves a more realistic selection of the behaviour factor instead of selecting an empirical value based on the ductility class and lateral resisting system adopted. The design procedure was tested on a group of four 3D steel structures, composed by moment-resisting frames with three storeys height and the same plan configuration in all storeys. The plan configuration was defined in order to target lateral restrained or unrestrained systems as well as plan regular or irregular structures. The same group of structures was also designed according to the force-based process prescribed in Eurocode 8. The member sizes obtained through the two approaches were compared and the seismic performance was assessed through nonlinear static and time-history analyses. The limit states referred to structural and non-structural damage, considering the two levels design approach, which are the serviceability and the ultimate limit states, were examined. The results obtained reveal that the IFBD leads to more economical structures that still comply with the performance requirements prescribed in Eurocode 8.

A Study on Improvement and Evaluation Plan of the Korean Postal Code (우편번호 체계 개선 및 평가 방안 연구)

  • Chang, Tai-Woo;Wang, Seung-Jin;Lim, Joon-Mook;Kim, Ho-Yon;Bae, Sung-Min
    • IE interfaces
    • /
    • v.19 no.3
    • /
    • pp.236-244
    • /
    • 2006
  • Postal code is essential for improving efficiency of mail sorting. The Korean postal code, which is introduced in 1970 and had been reformed two times, has controversial issues because of changed postal environments such as modification of administrative districts and logistical transformation into a hub-and-spokes structure. In this study, we propose several improvement and evaluation methods in order to prepare an alternative plan of postal code system. After performing status analysis, we define the customers of postal code and analyze the requirements of them. The 6 proposed new postal code systems are based on each customer groups’ requirements. To evaluate the new systems, we develop several quantitative and qualitative indexes and make a survey of postal experts. Besides, we evaluate the influence of them to the postal environments including delivery sequence sorting process.