• Title/Summary/Keyword: plaintext structure

Search Result 13, Processing Time 0.014 seconds

A Chosen Plaintext Linear Attack On Block Cipher Cipher CIKS-1 (CIKS-1 블록 암호에 대한 선택 평문 선형 공격)

  • 이창훈;홍득조;이성재;이상진;양형진;임종인
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 2003
  • In this paper, we firstly evaluate the resistance of the reduced 5-round version of the block cipher CIKS-1 against linear cryptanalysis(LC) and show that we can attack full-round CIKS-1 with \ulcorner56-bit key through the canonical extension of our attack. A feature of the CIKS-1 is the use of both Data-Dependent permutations(DDP) and internal key scheduling which consist in data dependent transformation of the round subkeys. Taking into accout the structure of CIKS-1 we investigate linear approximation. That is, we consider 16 linear approximations with p=3/4 for 16 parallel modulo $2^2$ additions to construct one-round linear approximation and derive one-round linear approximation with the probability P=1/2+$2^{-17}$ by Piling-up lemma. Then we present 3-round linear approximation with 1/2+$2^{-17}$ using this one-round approximation and attack the reduced 5-round CIKS-1 with 64-bit block by LC. In conclusion we present that our attack requires $2^{38}$chosen plaintexts with a probability of success of 99.9% and about $2^{67-7}$encryption times to recover the last round key.(But, for the full-round CIKS-1, our attack requires about $2^{166}$encryption times)

SEED and ARIA algorithm design methods using GEZEL (GEZEL을 이용한 SEED 및 ARIA 알고리즘 설계 방법)

  • Kwon, TaeWoong;Kim, Hyunmin;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.15-29
    • /
    • 2014
  • Increasing the smart instrument based social and economical activity, problems of electronic business's safety, reliability and user's privacy are be on the rise. so variety standard cryptography algorithms for information security have been developed in korea and How to efficiently implement them in a variety of environments is issued. ARIA and SEED, developed in Korea, are standard block cipher algorithm to encrypt the 128-bit plaintext, are each configured Feistel, SPN structure. In this paper, SEED and ARIA were implemented using the GEZEL language that can be used easily in the software designer because grammar is simple compared to other hardware description language. In particular, in this paper, will be described in detail the characteristics and design method using GEZEL as the first paper that implements 128bits ARIA and SEED and it showed the flexibility and efficiency of development using GEZEL. SEED designed GEZEL is occupied 69043 slice, is operating Maximum frequency 146.25Mhz and ARIA is occupied 7282 slice, is operating Maximum frequency 286.172Mhz. Also, Speed of SEED designed and implemented signal flow method is improved 296%.

Three Steps Polyalphabetic Substitution Cipher Practice Model using Vigenere Table for Encryption (Vigenere 테이블을 이용한 3단계 다중 알파벳 치환 암호화 모델)

  • Nguyen Huu Hoa;Dang Quach Gia Binh;Do Yeong Kim;Young Namgoong;Si Choon Noh
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.33-39
    • /
    • 2022
  • Recently, cyberattacks on infrastructure have been continuously occurring with the starting of neutralizing the user authentication function of information systems. Accordingly, the vulnerabilities of system are increasing day by day, such as the increase in the vulnerabilities of the encryption system. In this paper, an alternative technique for the symmetric key algorithm has been developed in order to build the encryption algorithm that is not easy for beginners to understand and apply. Vigenere Cipher is a method of encrypting alphabetic text and it uses a simple form of polyalphabetic substitution. The encryption application system proposed in this study uses the simple form of polyalphabetic substitution method to present an application model that integrates the three steps of encryption table creation, encryption and decryption as a framework. The encryption of the original text is done using the Vigenère square or Vigenère table. When applying to the automatic generation of secret keys on the information system this model is expected that integrated authentication work, and analysis will be possible on target system. ubstitution alphabets[3].