• 제목/요약/키워드: plain seal

검색결과 13건 처리시간 0.022초

CFD를 사용한 터보기계 비접촉식 실의 누설량 예측 (Prediction of Non-Contact-Type Seal Leakage Using CFD)

  • 하태웅
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.14-21
    • /
    • 2006
  • Leakage reduction through annular type seals of turbomachinery is necessary for enhancing their efficiency and the precise prediction method of seal leakage is needed. The analysis based on Bulk-flow concept has been mainly used in predicting seal leakage. However, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved for improving the prediction of seal leakage. FLUENT 6 which is commercial CFD(Computational Fluid Dynamics) code based on FVM(Finite Volume Method) and SIMPLE algorism has been used to analyze leakage of various non-contact-type seals in this presentation. Comparing with the results of Bulk-flow model analysis and experiment, the result of CFD analysis shows good agreement with that of existing theoretical analysis for the incompressible grooved seal and compressive plain and staggered seal. The CFD analysis also shows improvement on the leakage prediction of the incompressible plain seal and compressive see-through-type labyrinth seal.

CFD를 사용한 비접촉식 가스 실의 입구 선회류 영향 해석 (Analysis of Pre-Swirl Effect for Plain-Gas Seal Using CFD)

  • 하태웅
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.26-31
    • /
    • 2013
  • In present 3D CFD study, the method for determining leakage and rotordynamic coefficients of a plain-gas seal is suggested by using the relative coordinate system for steady-state simulation. In order to find the effect of pre-swirl speed at seal inlet, pre-swirl velocity is included as a parameter. Present analysis is verified by comparison with results acquired from Bulk-flow analysis code and published experimental results. The results of 3D CFD rotordynamic coefficients of direct stiffness(K) and cross-coupled stiffness(k) show improvements in prediction. As pre-swirl speed at seal inlet increases, k also increases to destabilize system. However, pre-swirl speed at seal inlet does not show sensitivity to the leakage and rotordynamic coefficients of K and damping(C).

3차원 CFD를 사용한 환상 실의 누설량 예측 (Prediction of Annular Type Seal Leakage Using 3D CFD)

  • 석희수;하태웅
    • Tribology and Lubricants
    • /
    • 제25권3호
    • /
    • pp.150-156
    • /
    • 2009
  • Precise leakage prediction for annular type seals of turbomachinery is necessary for enhancing their efficiency and various prediction methods have been developed. As the seal passage is designed intricately, the analysis based on Bulk-flow concept which has been mainly used in predicting seal leakage is limited. In order to improve the seal leakage prediction, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved. In this study, 3D CFD (Computational Fluid Dynamics) analysis has been performed for predicting leakage of various non-contact type anular seals using FLUENT. Compared to the results by Bulk-flow model analysis, experiment, and 2D CFD analysis, the result of 3D CFD analysis shows improvement in predicting seal leakage, especially for the parallel grooved pump seal.

CFD를 사용한 고성능 펌프 실의 동특성 계수 예측 (Prediction of Rotordynamic Coefficients for High-Performance-Pump Seal Using CFD Analysis)

  • 최복성;하태웅
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.37-43
    • /
    • 2010
  • Precise prediction of rotordynamic coefficients for annular type seal of turbomachinery is necessary for enhancing their vibrational stability and various prediction methods have been developed. As the seal passage is designed complicatedly, the analysis based on Bulk-flow concept which has been mainly used in predicting seal dynamics is limited. In order to improve the seal rotordynamic prediction, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved. In this study, 3D CFD(Computational Fluid Dynamics) analysis has been performed for predicting rotordynamic coefficients of non-contact type annular plain seal using FLUENT. Comparing with the results of Bulk-flow model analysis, the result of 3D CFD analysis shows good agreement.

분사를 수반하는 평씨일 내의 유동해석 (Flow Analysis of the Plain Seal with Injection)

  • 이관수;김우승;김기연;김창호
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.795-802
    • /
    • 1992
  • 본 연구에서는 일정한 각도의 분사를 갖는 평씨일(plain seal)에 대하여 각 인자들이 누수성능에 미치는 영향을 수치적으로 조사하였다. 인자들로는 축방향 레 이놀즈수, 축회전속도, 분사의 유입속도, 간극비, 분사의 위치 및 유입각 등이 고려되 었다.

A Study on the Rotordynamic Stability of Turbo Pump Unit

  • Kwak, Hyun-Duck;Lee, Yong-Bok;Kim, Chang-Ho;Ha, Tae-Woong;Yoo, Woo-Chul
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 2003
  • A turbo pump unit provides high pressure oxygen and fuel in a space shuttle main engine (SSME). This paper focused on rotordynamics, investigating its characteristics based on a numerical simulation of turbo pump finite element model. Speeds up to 50,000 rpm are considered, as well as the special problems related to elastic-ring, seal hydrodynamic force, shroud force and clearance-excitation farce. The rotordynamic prediction shows that the elastic-ring which is inserted between the casing and the outer race of ball bearing allows far an acceptable separate margin of first critical speed. Additionally, the results show that the floating ring seal, which have a peculiar ring, adds substantial stiffness and damping to the system as well as exhibits superior performance in terms of rotordynamic stability of system compared to the plain seal.

엇갈린 래버린스 실의 누설량 및 동특성 해석 (Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal)

  • 하태웅
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

시일 동특성에 미치는 열응력의 영향에 관한 연구 (The Effects of Thermal Stress on Seal Dynamics)

  • 양보석
    • Tribology and Lubricants
    • /
    • 제7권2호
    • /
    • pp.36-40
    • /
    • 1991
  • The dynamic characteristics of the annular pressure seal employed in pump have been theoretically deduced with consideration of the effects of elastic deformation due to the thermal stress. The thermal deformation is developed for the two-dimensional steady thermal stress distribution in a infinite circular cylinder subject to heating of the seal and shaft surface into the surrounding fluid. To demonstrate this analysis, the effects of thermal stress on rotordynamic coefficients and logarithmic decrement for annular plain seals was shown.

역방향스월자기주입 시일의 누설 성능에 관한 실험 연구 (Test Results of Leakage Performance for Anti-Swirl Self-Injection Seals)

  • 김창호;이용복
    • Tribology and Lubricants
    • /
    • 제7권2호
    • /
    • pp.41-45
    • /
    • 1991
  • An experimental investigation for leakage performance of five anti-swirl self-injection seals was carried out to select an optimum configuration for minimum leakage. Test results show that the self-injection mechanism with a plain seal generally degrades the leakage performance of noncontacting seals; however, through a series of the test program, an optimum anti-swirl self injection seal was selected to obtain a comparable leakage performance with a damper seal. A 12 holes anti-swirl and anti-leakage self-injected. configuration with a labyrinth surface gives minimum leakage among the tested anti-swirl self-injection seals.