• Title/Summary/Keyword: pixel processing

Search Result 930, Processing Time 0.024 seconds

Dead Pixel Detection Method by Different Response at Hot & Cold Images for Infrared Camera

  • Ye, Seong-Eun;Kim, Bo-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.1-7
    • /
    • 2018
  • In this paper, we propose soft dead pixels detection method by analysing different response at hot and cold images. Abnormal pixels are able to effect detecting a small target. It also makes confusing real target or not cause of changing target size. Almost exist abnormal pixels after image signal processing even if dead pixels are removed by dead pixel compensation are called soft dead pixels. They are showed defect in final image. So removing or compensating dead pixels are very important for detecting object. The key idea of this proposed method, detecting dead pixels, is that most of soft deads have different response characteristics between hot image and cold image. General infrared cameras do NUC to remove FPN. Working 2-reference NUC must be needed getting data, hot & cold images. The way which is proposed dead pixel detection is that we compare response, NUC gain, at each pixel about two different temperature images and find out dead pixels if the pixels exceed threshold about average gain of around pixels.

U2Net-based Single-pixel Imaging Salient Object Detection

  • Zhang, Leihong;Shen, Zimin;Lin, Weihong;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.463-472
    • /
    • 2022
  • At certain wavelengths, single-pixel imaging is considered to be a solution that can achieve high quality imaging and also reduce costs. However, achieving imaging of complex scenes is an overhead-intensive process for single-pixel imaging systems, so low efficiency and high consumption are the biggest obstacles to their practical application. Improving efficiency to reduce overhead is the solution to this problem. Salient object detection is usually used as a pre-processing step in computer vision tasks, mimicking human functions in complex natural scenes, to reduce overhead and improve efficiency by focusing on regions with a large amount of information. Therefore, in this paper, we explore the implementation of salient object detection based on single-pixel imaging after a single pixel, and propose a scheme to reconstruct images based on Fourier bases and use U2Net models for salient object detection.

Establishment Moving Picture & Recover of Image Eliminated Overlap Pixel using Picture Resemblance pattern (닮은패턴을 이용한 중첩영상 소거 동영상 화면복원법)

  • Jin, Hyun-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.29-35
    • /
    • 2012
  • In this paper, it is presented the method of image recovering which existing is only pixel processing, but suggesting method is concluding image clustering overlap degree after classfying around unit fixel to crowd pixel. Concluding overlap degree threshold value is after identifying pattern pixel and grasping geometry structure of sample pattern and deduction of deciding function. distinguishing feature space is above four dimension is reason of not visual observation of pattern structure. consideration of distribution structure is distance of center of crowd pixel, the number of each crowd pattern pixel and standard deviation. The over threshold value elimate the overlap image and the downward is recovered and established dynamic image. memory storage deduction of 20% and elevation of 15% performance is estimated in recovery of image.

Development of a Remotely Sensed Image Processing/Analysis System : GeoPixel Ver. 1.0 (JAVA를 이용한 위성영상처리/분석 시스템 개발 : GeoPixel Ver. 1.0)

  • 안충현;신대혁
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.13-30
    • /
    • 1997
  • Recent improvements of satellite remote sensing sensors which are represented by hyperspectral imaging sensors and high spatial resolution sensors provide a large amount of data, typically several hundred megabytes per one scene. Moreover, increasing information exchange via internet and information super-highway requires the developments of more active service systems for processing and analysing of remote sensing data in order to provide value-added products. In this sense, an advanced satellite data processing system is being developed to achive high performance in computing speed and efficieney in processing a huge volume of data, and to make possible network computing and easy improving, upgrading and managing of systems. JAVA internet programming language provides several advantages for developing software such as object-oriented programming, multi-threading and robust memory managent. Using these features, a satellite data processing system named as GeoPixel has been developing using JAVA language. The GeoPixel adopted newly developed techniques including object-pipe connect method between each process and multi-threading structure. In other words, this system has characteristics such as independent operating platform and efficient data processing by handling a huge volume of remote sensing data with robustness. In the evaluation of data processing capability, the satisfactory results were shown in utilizing computer resources(CPU and Memory) and processing speeds.

A Single-Chip Video/Audio CODEC for Low Bit Rate Application

  • Park, Seong-Mo;Kim, Seong-Min;Kim, Ig-Kyun;Byun, Kyung-Jin;Cha, Jin-Jong;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2000
  • In this paper, we present a design of video and audio single chip encoder/decoder for portable multimedia application. The single-chip called as video audio signal processor (VASP) consists of a video signal processing block and an audio single processing block. This chip has mixed hardware/software architecture to combine performance and flexibility. We designed the chip by partitioning between video and audio block. The video signal processing block was designed to implement hardware solution of pixel input/output, full pixel motion estimation, half pixel motion estimation, discrete cosine transform, quantization, run length coding, host interface, and 16 bits RISC type internal controller. The audio signal processing block is implemented with software solution using a 16 bits fixed point DSP. This chip contains 142,300 gates, 22 Kbits FIFO, 107 kbits SRAM, and 556 kbits ROM, and the chip size is $9.02mm{\times}9.06mm$ which is fabricated using 0.5 micron 3-layer metal CMOS technology.

  • PDF

Cascaded-Hop For DeepFake Videos Detection

  • Zhang, Dengyong;Wu, Pengjie;Li, Feng;Zhu, Wenjie;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1671-1686
    • /
    • 2022
  • Face manipulation tools represented by Deepfake have threatened the security of people's biological identity information. Particularly, manipulation tools with deep learning technology have brought great challenges to Deepfake detection. There are many solutions for Deepfake detection based on traditional machine learning and advanced deep learning. However, those solutions of detectors almost have problems of poor performance when evaluated on different quality datasets. In this paper, for the sake of making high-quality Deepfake datasets, we provide a preprocessing method based on the image pixel matrix feature to eliminate similar images and the residual channel attention network (RCAN) to resize the scale of images. Significantly, we also describe a Deepfake detector named Cascaded-Hop which is based on the PixelHop++ system and the successive subspace learning (SSL) model. By feeding the preprocessed datasets, Cascaded-Hop achieves a good classification result on different manipulation types and multiple quality datasets. According to the experiment on FaceForensics++ and Celeb-DF, the AUC (area under curve) results of our proposed methods are comparable to the state-of-the-art models.

A Fast Half Pixel Motion Estimation Method based on the Correlations between Integer pixel MVs and Half pixel MVs (정 화소 움직임 벡터와 반 화소 움직임 벡터의 상관성을 이용한 빠른 반 화소 움직임 추정 기법)

  • Yoon HyoSun;Lee GueeSang
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.131-136
    • /
    • 2005
  • Motion Estimation (ME) has been developed to remove redundant data contained in a sequence of image. And ME is an important part of video encoding systems, since it can significantly affect the qualify of an encoded sequences. Generally, ME consists of two stages, the integer pixel motion estimation and the half pixel motion estimation. Many methods have been developed to reduce the computational complexity at the integer pixel motion estimation. However, the studies are needed at the half pixel motion estimation to reduce the complexity. In this paper, a method based on the correlations between integer pixel motion vectors and half pixel motion vectors is proposed for the half pixel motion estimation. The proposed method has less computational complexity than the full half pixel search method (FHSM) that needs the bilinear interpolation of half pixels and examines nine half pixel points to the find the half pixel motion vector. Experimental results show that the speedup improvement of the proposed method over FHSM can be up to $2.5\~80$ times faster and the image quality degradation is about to $0.07\~0.69(dB)$.

An efficient architecture for motion estimation processor satisfying CCITT H.261 (CCITT H.261를 위한 효율적인 구조의 움직임 추정 프로세서 VLSI 설계)

  • 주락현;김영민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.30-38
    • /
    • 1995
  • In this paper, we propose an efficient architecture for motion estimation processor which performs one of essential functions in moving picture coding algorithms. Simple control mechanism of data flow in register array which stores pixel data, parallel processing of pixel data and pipelining scheme in arithmetic umit allow this architecture to process a 352*288 pixel image at the frame rate of 30fs, which is compatable with CCITT standard H.261.

  • PDF

Improvement of the Accuracy and Conveniency in Automated Strain Measurement through High-Resolution Image Processing (고해상도 화상처리를 통한 자동 변형률 측정의 정확도와 편의성 개선)

  • Kim, H.J.;Choi, S.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.34-39
    • /
    • 2006
  • An automated surface-strain measurement system, named ASIAS, was developed by using the image processing and stereo vision techniques in the previous studies by the corresponding author and his coworkers. This system has been upgraded mainly to improve the accuracy through image enhancement, sub-pixel measurement, surface smoothing, etc., since the first version was released. The present study has still more improved the convenience of users as well as the accuracy of measurement by processing high resolution images 8 mega pixels or more which can be easily obtained from a portable digital steal camera. It is proved that high resolution image processing greatly decreases the measurement error and gives strain data without considerable deterioration of accuracy even when the deformed grids to be measured and the master grids for camera calibration are captured together in the same image, making the whole process of strain measurement much simpler.

  • PDF

High capacity multi-bit data hiding based on modified histogram shifting technique

  • Sivasubramanian, Nandhini;Konganathan, Gunaseelan;Rao, Yeragudipati Venkata Ramana
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.677-686
    • /
    • 2018
  • A novel data hiding technique based on modified histogram shifting that incorporates multi-bit secret data hiding is proposed. The proposed technique divides the image pixel values into embeddable and nonembeddable pixel values. Embeddable pixel values are those that are within a specified limit interval surrounding the peak value of an image. The limit interval is calculated from the number of secret bits to be embedded into each embeddable pixel value. The embedded secret bits can be perfectly extracted from the stego image at the receiver side without any overhead bits. From the simulation, it is found that the proposed technique produces a better quality stego image compared to other data hiding techniques, for the same embedding rate. Since the proposed technique only embeds the secret bits in a limited number of pixel values, the change in the visual quality of the stego image is negligible when compared to other data hiding techniques.