• Title/Summary/Keyword: pixel block

Search Result 303, Processing Time 0.031 seconds

Block Label-based Binary Connected-component Labeling using an efficient pixel-based scan mask (효율적인 화소기반 스캔마스크를 이용한 블록라벨기반 이진연결요소 라벨링)

  • Kim, Kyoil
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.259-266
    • /
    • 2013
  • Binary connected-components labeling, which is widely used in the field of the pattern recognition, has been researched for a long time as one of the basic image processing techniques. Two-scan algorithm has been mainly used in the researches of the connected-components labeling. Recently, for the first scan in the two-scan algorithm, block-based labeling approaches have been used and reported as the fastest methods. In this paper, a new efficient scan mask for connected-components labeling with a block-based labeling approach is proposed. Labeling with the new pixel-based scan mask is more efficient than any other existing method. The results of the experiments show that the proposed method is faster than the existing fastest method.

A blocking effect reduction method for disparity computation under the block matching algorithm (블록 매칭 기반에서 디스페리티의 블록킹 현상을 줄이는 알고리즘)

  • 송원석;유용현;문정환;김민기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1996-1999
    • /
    • 2003
  • Stereo matching is an important technique in the are of computer vision. There are already many theorems to find disparity map using stereo images. Usually, disparity is searched by using block matching. However block matching result in blocking effects caused by using fixed size window for computing pixel correlations. This paper suggests an efficient method to remove the blocking effect in stereo matching procedures.

  • PDF

Fast Intra Prediction using Pixel Variation in H.264 (H.264에서 화소 변화량을 이용한 빠른 인트라 예측)

  • Lee, Tak-Gi;Kim, Sung-Min;Sin, Kwang-Mu;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.956-965
    • /
    • 2008
  • H.264/AVC is the newest video coding standard of ITU-T VCEG and the ISO/IEC MPEG, offering a significant performance improvement over previous video coding standards. However, the computational complexity of H.264/AVC is drastically increased because of new technologies such as intra prediction, variable block size, quarter-pels motion estimation/compensation, etc. In this paper, we propose a fast intra prediction scheme which has two step processing. The first step is a fast block size decision which can be calculated only in one block without considering all cases of $4{\times}4$ block and $16{\times}16$ block. The complexity of the intra prediction can be reduced by using boundary difference values of macroblock. After selecting the block size, we can make mode decision using the neighbouring reference pixels and representative pixels of the block in the second step. The experimental results show that the proposed algorithm saved on the average 41.5% encoding time without any significant PSNR losses.

  • PDF

Block-based Color Image Segmentation Using Y/C Bit-Plane Sum]nation Image (Y/C 비트 평면합 영상을 이용한 블록 기반 칼라 영상 분할)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.

  • PDF

A Fast Search Algorithm for Sub-Pixel Motion Estimation (부화소 움직임 추정을 위한 고속 탐색 기법)

  • Park, Dong-Kyun;Jo, Seong-Hyeon;Cho, Hyo-Moon;Lee, Jong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.26-28
    • /
    • 2007
  • The motion estimation is the most important technique in the image compression of the video standards. In the case of next generation standards in the video codec as H.264, a high compression-efficiency can be also obtained by using a motion compensation. To obtain the accurate motion search, a motion estimation should be achieved up to 1/2 pixel and 1/4 pixel uiuts. To do this, the computational complexity is increased although the image compression rate is increased. Therefore, in this paper, we propose the advanced sub-pixel block matching algorithm to reduce the computational complexity by using a statistical characteristics of SAD(Sum of Absolute Difference). Generally, the probability of the minimum SAD values is high when searching point is in the distance 1 from the reference point. Thus, we reduced the searching area and then we can overcome the computational complexity problem. The main concept of proposed algorithm, which based on TSS(Three Step Search) method, first we find three minimum SAD points which is in integer distance unit, and then, in second step, the optimal point is in 1/2 pixel unit either between the most minimum SAD value point and the second minimum SAD point or between the most minimum SAD value point and the third minimum SAD point In third step, after finding the smallest SAD value between two SAD values on 1/2 pixel unit, the final optimized point is between the most minimum SAD value and the result value of the third step, in 1/2 pixel unit i.e., 1/4 pixel unit in totally. The conventional TSS method needs an eight.. search points in the sub-pixel steps in 1/2 pixel unit and also an eight search points in 1/4 pixel, to detect the optimal point. However, in proposed algorithm, only total five search points are needed. In the result. 23 % improvement of processing speed is obtained.

  • PDF

Random Pixel Sampling-based Backlight Dimming for Liquid Crystal Display (LCD 디스플레이를 위한 무작위 화소 추출 기반 백라이트 디밍)

  • Kang, Suk-Ju;Kim, Young Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.174-180
    • /
    • 2014
  • In this paper, we propose the random pixel sampling technique to solve the high computational complexity in the perceptual SSIM-based backlight dimming. Specifically, the proposed algorithm selects pixels in a total frame considering the pre-defined number, and generates the block by combining these pixels. Then, it estimates parameters, which are required in the SSIM calculation, in the combined block, and hence, it can reduce the computation time significantly. In the experimental results, the proposed algorithm reduced the average power consumption and computation time by up to 38.1776 % and 99.5828 %, respectively while preserving the average SSIM., compared with the conventional algorithm.

MOTION ESTIMATION METHOD BY EMPLOYING A STOCHASTIC SAMPLING TECHNIQUE

  • Seok, Jinwuk;Mah, Pyeong-Soo;Son, Yongki
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.1006-1009
    • /
    • 2003
  • In a motion estimation method for use in encoding a moving picture, a full-pixel motion vector is estimated by stochastically sampling a pixel to be processed in a predetermined-sized block of a previous frame or a next frame as a reference frame for each of a plurality of equal-sized blocks in a current frame. Then, a half-pixel motion vector is estimated based on the full-pixel motion vector. Accordingly, both the calculation amount and the calculation time required for the motion estimation are effectively reduced. Further, it can be prevented that the hardware becomes complicated. .

  • PDF

Pixel decimation for block motion vector estimation (블록 움직임 벡터의 검출을 위한 화소 간축 방법에 대한 연구)

  • Lee, Young;Park, Gwi-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.91-98
    • /
    • 1997
  • In this paper, a new pixel decimation algorithm for the estimation of motion vector is proposed. In traditional methods, the computational cost can be reduced since only part of the pixels are used for motion vector calculation. But these methods limits the accuracy ofmotion vector because of the same reason. We derive a selection criteria of subsampled pixels that can reduce the probablity of false motion vector detection based on stochastic point of view. By using this criteria, a new pixel decimation algorithm that can reduce the prediction error with similar computational cost is presented. The simulation results applied to standard images haveshown that the proposed algorithm has less mean absolute prediction error than conventional pixel decimation algorithm.

  • PDF

A Study on the Fast Block Matching Algorithm (고속 Block Matching 알고리즘에 관한 연구)

  • 이인홍;박래홍
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.667-674
    • /
    • 1987
  • In this paper an effective block matching algorithm is proposed to find the motion vector. There are two approaches to the estimation of the motion vector in MCC (motion compensated coding), i.e., pel(pixel element) recursive algorithm and block matching algorithm. The search algorithm in this paper is based on the block matching method. The advantage of a proposed algorithm using integral projections is the reduction of the computation time. While the conventional block matching methods have to be computed in 2-dimensional arrays, the proposed algorithm using integral projections can be computed in 1-dimensional arrays. In comparison with conventional block matching methods, a computer simulation shows that though the prediction error increases 0.23 db, it is not detectable for human eyes and the average reduction ratio of computation time obtained from the proposed algorithm is about 3-4.

  • PDF

A New Image Enhancement Algorithm Based on Bidirectional Diffusion

  • Wang, Zhonghua;Huang, Xiaoming;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • To solve the edge ringing or block effect caused by the partial differential diffusion in image enhancement domain, a new image enhancement algorithm based on bidirectional diffusion, which smooths the flat region or isolated noise region and sharpens the edge region in different types of defect images on aviation composites, is presented. Taking the image pixel's neighborhood intensity and spatial characteristics as the attribute descriptor, the presented bidirectional diffusion model adaptively chooses different diffusion criteria in different defect image regions, which are elaborated are as follows. The forward diffusion is adopted to denoise along the pixel's gradient direction and edge direction in the pixel's smoothing area while the backward diffusion is used to sharpen along the pixel's gradient direction and the forward diffusion is used to smooth along the pixel's edge direction in the pixel's edge region. The comparison experiments were implemented in the delamination, inclusion, channel, shrinkage, blowhole and crack defect images, and the comparison results indicate that our algorithm not only preserves the image feature better but also improves the image contrast more obviously.