• 제목/요약/키워드: pitching motion

검색결과 161건 처리시간 0.026초

투구 동작의 역학 (Throwing Mechanics)

  • 문영래;이경일;이광철
    • 대한정형외과스포츠의학회지
    • /
    • 제2권2호
    • /
    • pp.113-118
    • /
    • 2003
  • 던지기 동작은 wind-up, early and late cooking, acceleration, deceleration, follow-through 6단계로 나눌 수 있다. 야구에서 과사용 증후군에 의한 손상은 대부분 던지기 동작에서 발생된다. 잘못된 던지기 동작은 상지 손상의 원인이 된다 본 종설의 목적은 동작 분석을 통하여 던지기 동작에 수반되는 각 관절의 생역학 및 병적 역학을 파악함에 있다

  • PDF

플래핑 운동 및 키놀이 운동을 하는 얇은 에어포일의 공력특성에 대한 수치 해석 (Numerical Analysis on the Aerodynamic Characteristics of Thin Airfoil with Flapping and Pitching Motion)

  • 김우진
    • 한국항공운항학회지
    • /
    • 제21권1호
    • /
    • pp.45-50
    • /
    • 2013
  • In this study, lumped-vortex element method and thin airfoil theory were used to analyze aerodynamic characteristics of airfoils with relative motion that had camber lines of NACA $44{\times}{\times}$ airfoil in 2-dimensional unsteady incompressible potential flow. Velocity disturbance due to airfoil was calculated by lumped-vortex element model and force distribution on airfoil by unsteady Bernoulli's equation. Variables in relative motion were considered the period p, the amplitude of flapping $A_f$ and pitching $A_p$, and the phase difference between flapping and pitching ${\phi}_p$ and the angle of attack ${\alpha}$. Due to movement of an airfoil, dag was induced in 2-dimensional unsteady incompressible potential flow. The numerical results show that the aerodynamic characteristics of the airfoil with flapping and pitching at the same time are illustrated. Especially the mean lift coefficient became smaller, but drag coefficient became larger.

Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion

  • Wu, Jong-Cheng;Wang, Yen-Po;Chen, Yi-Hsuan
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.165-188
    • /
    • 2012
  • In the first part of the paper, the optimal design parameters for tuned liquid column dampers (TLCD) in harmonic pitching motion were investigated. The configurations in design tables include uniform and non-uniform TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 for the design in different situations. A closed-form solution of the structural response was used for performing numerical optimization. The results from optimization indicate that the optimal structural response always occurs when the two resonant peaks along the frequency axis are equal. The optimal frequency tuning ratio, optimal head loss coefficient, the corresponding response and other useful quantities are constructed in design tables as a guideline for practitioners. As the value of the head loss coefficient is only available through experiments, in the second part of the paper, the prediction of head loss coefficients in the form of a design chart are proposed based on a series of large scale tests in pitching base motions, aiming to ease the predicament of lacking the information of head loss for those who wishes to make designs without going through experimentation. A large extent of TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 and orifice blocking ratios ranging from 0%, 20%, 40%, 60% to 80% were inspected by means of a closed-form solution under harmonic base motion for identification. For the convenience of practical use, the corresponding empirical formulas for predicting head loss coefficients of TLCDs in relation to the cross-sectional ratio and the orifice blocking ratio were also proposed. For supplemental information to horizontal base motion, the relation of head loss values versus blocking ratios and the corresponding empirical formulas were also presented in the end.

Portable Calibration System for Displacement Measuring Sensors

  • Eom, Tae-Bong;Lee, Jae-Yun;Kim, Jae-Wan;Joon, Lyou
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.56-59
    • /
    • 2006
  • A vibrational model of powder transfer equipment based on the lumped parameter method was developed, in which the operating motion consists of surging, bouncing, and pitching. After decoupling the equation of motion, the vibrational excitation source of the pitching motion was removed. So the designers are able to plan the optimum design to adjust the motion trajectory of the powder transfer equipment. That is, a procedure to adjust the motion trajectory of powder transfer equipment by changing design specifications such as the installation position, the direction of the motor, the driving speed, the mass unbalance, the stiffness coefficient, and the installation position of the support spring, is presented in this paper. The powder transfer equipment manufactured according to the results of this study did not suffer fatigue destruction, since the maximum stress on the basket structure was sufficiently small.

자이로 효과의 피칭 모션을 고려한 한 바퀴 로봇의 모델 기반 롤링 모션 제어 (Model-Based Rolling Motion Control of an One-wheeled Robot Considering the Pitching Motion of a Gyroscopic Effect)

  • 이상덕;정슬
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.335-341
    • /
    • 2016
  • In general, a yawing motion concept is used for the lateral control of one wheel robot where the gimbal system is located horizontally. In this paper, another concept of the vertically located gimbal system is presented for the same purpose. Although the vertical concept undergoes an instability more easily than the horizontal one, the pitching motion of the gyroscopic effect is considered. Firstly, the trade-off relation between two balancing concepts are investigated by comparing the gyroscopic mechanism. Secondly, the dynamic model for the problem of the proposed concept is derived using the oscillatory inverted stick model. Thirdly, the stability of the model is analyzed using the phase trajectory method. Finally, the control performance of the system by a vibration controller is simulated.

대학 골프 선수의 Pitching wedge 스윙동작의 운동학적 특성 분석 (Kinematical Analysis of Pitching wedge swing motion in University Golfer)

  • 백진호;윤동섭;김재필
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.133-149
    • /
    • 2003
  • The purposes of present study were to determine the major check-points of golf swing from the review of previous studies, and to suggest additional information on the teaching theory of golf. The golf swing motion of 6 male and female elite university golf players were filmed with 16mm Locam II high speed cameras at the speed of 200f/s, and variables such as time, displacement, angle, velocity were calculated and analyzed by 3D Cinematography using DLT method. The results were: 1. Differences were shown in the ratio of weight distribution on the feet, cocking angle, take-back velocity, club-head velocity at impact depending upon the physical characteristics and club used for swing. 2. Time for the down-swing and impact were $0.27{\sim}0.29s$ in men and $0.29{\sim}0.32s$ in women, which was 1/3 of the time for the back-swing. Women showed longer total swing time than men because of longer time in back-swing, follow-through and finish. 3. Men showed larger range of motion in shoulder and knee joints than women, on the other hand women showed larger range of motion in hip joint than men. 4. Cocking motion and right elbow flexion were occurred at the top of back-swing and cocking release was occurred at the moment of impact. Maximum rotations of shoulder and hip joints were found between the top of back-swing and down-swing phase. 5. Women showed lower back-swing velocity than men, and men showed higher club velocity(men: $38.2{\sim}38.6m/s$, women: $35.1{\sim}36.4m/s$) than women.

고차스펙트럼을 이용한 선체 종동요의 비선형적 거동에 관한 해석 (Higher Order Spectral Analysis of Non-linear Pitching Motion)

  • 강병호;;김태호;박준모;공길영
    • 한국항해항만학회지
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2017
  • 선체의 비선형적 동요현상은 선박의 감항성 확보와 관련하여 최근 활발하게 연구가 이루어지는 분야들 중 하나이다. 본 연구에서는 고차 스펙트럼 해석방법들 중 하나인 바이스펙트럼 해석방법과 바이코히어런스 해석방법을 적용하여 선체의 비선형적인 동요 현상을 해석하였다. 본 연구를 통해 기존에 알려진 추파상황에서의 비선형적 선체 종동요 현상과 더불어 추사파 및 우현 횡파 상황에서도 선체 종동요의 비선형 위상 동조 현상이 일어나는 것을 확인하였다. 또한, 바이코히어런스 방법을 통해 주파수간 비선형적 간섭현상을 수치화 하여 주파수 대역별로 위상 동조 현상을 비교할 수 있었다. 이를 통해 선체 종동요의 파워스펙트럼상의 피크 주파수 이외의 주파수 대역에서 비선형적 위상결합이 더 강하게 일어난다는 사실을 확인하였다. 이에 더하여, 바이코히어런스 해석방법은 정규화 방법에 크게 영향을 받지 않는 다는 사실 또한 확인하였다.

Biomechanical Evaluation of Elbow Moment in Pitching Types according to the Throwing Speed: A Pilot Study

  • Lee, Chang-Hyung;Yang, Jin-Hwan;Lee, Seung-Hoo;Lee, Gyu-Chang;Park, Jong-Chul
    • 한국운동역학회지
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2020
  • Objective: The incidence rate of elbow ulnar collateral ligament injuries is dependent on the throwing speed or pitching type, especially in adolescent baseball players. However, mixed results have been reported due to a lack of controlled biomechanical analysis. Thus, the purpose of this study was to investigate the biomechanical analysis of the elbow in relation to throwing speed and pitching type. Method: Four overhead type high-school baseball players were recruited for this study. The participants were asked to throw balls with different types of pitch and speed. While the throwing speeds were measured, each pitching moment of the elbow was recorded. Descriptive statistics, frequency analysis, mean comparison analysis, and Pearson's correlation analysis were performed in order to examine differences in peak varus and valgus moment during pitching motion in the elbow in all throwing speed and pitching types. Results: There was no significant difference in physical characteristics, throwing speed, and momentum variability among all players. The mean varus moments were 44.38±1.55 Nm, 48.83±1.66 Nm, and 48.94±0.95 Nm, and the moment gaps between varus and valgus were 7.36±3.25 Nm, 7.44±2.02 Nm, and 7.36±2.62 Nm in fastball, curveball, and slider ball, respectively. The varus moment was higher in the curved and slider balls than in the fastballs, and there was no significant differences between the varus moments regarding the pitching type. However, the increase in valgus moment and decrease in moment gap according to throwing speed was significantly increased in the slider ball (r=0.718 and -0.591, respectively). Conclusion: The possibility of elbow injury caused by the valgus moment or moment gapincreases more rapidly in slider balls as the speed increases. Based on our results, appropriate pitching guidelines should be suggested to prevent ulnarligament injuries, especially in adolescent baseball players.

초소형 의공학용 유영로봇을 위한 플래핑 평판들의 추력 발생 연구 (Study on the Thrust Generation of Flapping Flat Plates for Microscale Biomedical Swimming Robots)

  • 안상준;김용대;맹주성;한철희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.415-420
    • /
    • 2007
  • Creatures in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Small-size creatures do not use flapping wings. Thus, it is questionable at which Reynolds number the propulsion using the flapping wings are effective. In this paper, the onset conditions of the thrust generation from the combined motion of flat plates (heaving, pitching in the motion and also tandem, biplane in the array) is investigated using a Lattice Boltzmann method. To solve the pitching motion of the plate on the regularly spaced lattices, 2-D moving boundary condition was implemented. The present method is validated by comparing the wake patterns behind a oscillating circular cylinder and its hydrodynamic characteristics with the CFD results. Present method can be applied to the design of micro flapping propulsors for biomedical use.

  • PDF

철심형 이동자와 고정자의 형상에 따른 영구자석 선형 동기전동기의 전자기력 특성 비교 및 피칭 모멘트 실험 (Comparison of Electromagnetic Force Characteristics and Experiment of Pitching Moment in Permanent Magnet Linear Synchronous Motor According to the Moving Iron Core and Stator Topology)

  • 이승한;조한욱;김경호;오정석
    • 전기학회논문지
    • /
    • 제64권12호
    • /
    • pp.1695-1702
    • /
    • 2015
  • This paper presents the characteristic analysis and experiment of force characteristics in permanent magnet linear synchronous motor for accuracy prediction of linear motion machine tools. In particular, the pitching moment resulting from attraction force ripple has been analysed and tested. Firstly, we analysed the characteristics of detent force, attraction force, and pitching moment in permanent magnet linear synchronous motor according to the design techniques such as auxiliary teeth, chamfering, and permanent magnet skewing. In addition, we suggested the experimental set for measurement of pitching moment. Finally, the results from measurement shows the good agreement with those obtained from finite element analysis results.