• Title/Summary/Keyword: pitch-based carbon fiber

Search Result 84, Processing Time 0.02 seconds

Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination (플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성)

  • Lee, Raneun;Lim, Chaehun;Kim, Min-Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Fluorination was carried out to improve the adsorption performance of pitch-based activated carbon fibers (ACFs) onto acetic acid. Both plasma and direct gas fluorination were used for fluorination, and the acetic acid gas adsorption performance of fluorinated ACFs was investigated. X-ray photoelectron spectroscopy (XPS) is analyzed to determine the surface characteristics of ACFs, and the pore characteristics were analyzed by 77 K nitrogen adsorption. An adsorption performance was measured through gas chromatography, and it was confirmed that the breakthrough time of plasma fluorinated sample was 790 min and that the breakthrough time was delayed compared to that of using untreated one of 650 min. However, the breakthrough time of direct gas fluorinated sample was 390 min, indicating that the adsorption performance was inhibited. The plasma fluorinated ACFs showed an increase in the adsorption performance due to an electrostatic attraction between the acetic acid gas (CH3COOH) with the fluorine group introduced to the surface without changing its specific surface area. On the other hand, the specific surface area of the direct gas fluorinated ACFs decreased significantly up to 55%, and the physical adsorption effect on the acetic acid gas also reduced.

A Study on Radiation Shielding for Grid-stiffened Multi-Functional Composite Structures (격자-강화된 다기능 복합재 구조체의 방사차폐에 관한 연구)

  • Jang, Tae Seong;Rhee, Juhun;Seo, Hyun-Suk;Hyun, Bum-Seok;Kim, Taig Young;Seo, Jung Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.629-639
    • /
    • 2014
  • This paper deals with an alternative multi-functional structures by using grid-stiffened composite structure with excellent bending stiffness and lightweight characteristics which is capable of easy embedding of electrical/electronic circuitry into structure. The enhancement of thermal conduction capability is made by the application of pitch-based carbon fiber. The lightweight radiation spot shielding technique is also proposed for multi-functional structures without conventional housing and the effectiveness of selective radiation shielding is validated through the proton irradiation test.

Selective Separation of $CO_2/CH_4$ by Pore Structure Modification of Activated Carbon Fiber (활성탄소섬유의 기공구조 변형을 이용한 $CO_2/CH_4$의 선택적 분리 기술)

  • Moon, S.H.;Park, S.Y.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1027-1034
    • /
    • 2007
  • This research was focused on the selective separation of $CO_2$ or $CH_4$ from mixture of these gases, by controlling the size of pore or pore gate. Pitch based activated carbon fibers(ACF) were used as adsorbents. The size of pore gate was controlled by the molecule having similar size to that of pore opening. After the adsorption of adsorbate on pore surface, planar molecules such as benzene and naphthalene covered the pore gate. The slow release of adsorbate from the pores covered by planar molecules makes apertures between planar molecules covering pore gate and this structure can be fixed by rapid pyrolysis. The control of pore gate using benzene as covering molecules could not accomplished due to the simultaneous volatilization of benzene and adsorbate$(CO_2)$ caused by similar temperatures of benzene volatilization and adsorbate desorption. Therefore we replaced benzene with naphthalene looking for the stability at a $CO_2$ desorption temperature. The naphthalene molecule was adsorbed on the ACF up to 15% of ACF weight and showed no desorption until $100^{\circ}C$, indicating that the molecule could be used as a good cover molecule. Naphthalene could cover almost all the pore gate, reducing BET surface area from 753 $m^2/g$ to 0.7 $m^2/g$. A mixed gas$(CO_2:CH_4=50:50)$ was adsorbed on the naphthalene treated OG-7A ACF. The amount of $CO_2$ adsorption increased with total pressure, whileas thai of $CH_4$ was not so much influenced on the pressure, indicating that $CO_2$ made more compounds on the ACF surface along with total pressure increase. The most $CO_2$ and the least $CH_4$ were adsorbed in the condition of 0.4 atm, resulting in the highly pure $CH_4$ left in ACF.

Effect of pH on the Synthesis of $LiCoO_2$ with Malonic Acid and Its Charge/Discharge Behavior for a Lithium Secondary Battery

  • Kim, Do Hun;Jeong, Yu Deok;Kim, Sang Pil;Sim, Un Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1125-1132
    • /
    • 2000
  • The pH effect of the precursor solution on the preparation of $LiCoO_2$ by a solution phase reaction containing malonic acid was carried out. Layered $LiCoO_2$ powders were obtained with the precursors prepared at the different pHs (4, 7, and 9) and heat-treated at $700^{\circ}C(LiCoO_2-700)$ or $850^{\circ}C(LiCoO_2-850)$ in air. pHs of the media for precursor synthesis affects the charge/discharge and electrochemical properties of the $LiCoO_2electrodes.$ Upon irrespective of pH of the precursor media, X-ray diffraction spectra recorded for $LiCoO_2-850$ powder showed higher peak intensity ratio of I(003)/I(104) than that of $LiCoO_2-700$, since the better crystallization of the former crystallized better. However, $LiCoO_2$ synthesized at pH 4 displayed an abnormal higher intensity ratio of I(003)/I(104) than those synthesized at pH 7 and 9. The surface morphology of the $LiCoO_2-850$ powders was rougher and more irregular than that of $LiCoO_2-700$ made from the precursor synthesized at pH 7 and 9. The $LiCoO_2electrodes$ prepared with the precursors synthesized at pH 7 and 9 showed a better electrochemical and charge/discharge characteristics. From the AC impedance spectroscopic experiments for the electrode made from the precursor prepared in pH 7, the chemical diffusivity of Li ions (DLi+) in $Li0.58CoO_2determined$ was 2.7 ${\times}$10-8 $cm^2s-1$. A cell composed of the $LiCoO_2-700$ cathode prepared in pH 7 with Lithium metal anode reveals an initial discharge specific capacity of 119.8 mAhg-1 at a current density of 10.0 mAg-1 between 3.5 V and 4.3 V. The full-cell composed with $LiCoO_2-700$ cathode prepared in pH 7 and the Mesocarbon Pitch-based Carbon Fiber (MPCF) anode separated by a Cellgard 2400 membrane showed a good cycleability. In addition, it was operated over 100 charge/discharge cycles and displayed an average reversible capacity of nearly 130 mAhg-1.