• 제목/요약/키워드: pitch space

Search Result 283, Processing Time 0.032 seconds

Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System (Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Jung, Sung-Nam;Kim, Ji-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.40-50
    • /
    • 2005
  • In this paper, preliminary results for performance prediction of a dual-rotor wind turbine generator system are presented. Blade element and momentum theories are used to model the aerodynamic forces and moments acting on the rotor blades, and multi-body dynamics approach is used to integrate the major components to represent the overall system. Not only the steady-state performance but the transient response characteristics are analyzed. Pitch control strategy to control the rotor speed and the generator output is proposed and its performance is verified through the nonlinear simulation.

Reaction Wheel Momentum Dumping with Magnetic Torquer Failure (자기토커 고장시 반작용휠 모멘텀 덤핑)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.371-378
    • /
    • 2019
  • High precision pointing satellite uses the reaction wheels for the attitude control and their momentum dumping is performed by the three magnetic torquers. In this paper, the effects of one magnetic torquer's failure on the momentum dumping will be reviewed. When the satellite on the high inclination angle orbit holds LVLH (Local Vertical Local Horizontal) attitude, pitch axis magnetic torquer failure causes the momentum dumping failure. But in case of other torquer's failure, momentum dumping is still possible with degraded dumping performance. When pitch axis magnetic torquer fails, momentum dumping is possible by changing the satellite attitude. This paper propose the satellite attitude change to make the momentum dumping possible when pitch axis magnetic torquer fails. In addition, if torquer arrangement is modified, momentum dumping is always possible regardless of any torquer's failure.

Array Design of HLW Canisters considering Thermal Concentrations (암반내 열접중을 고려한 고준위 폐기물 캐니스터의 배열설계)

  • 양형식;이춘우
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.256-260
    • /
    • 1994
  • HLW canister array was designed by FLLSSM program, considering the thermal concentration. Rock properties were chosen as those of granite, the most possible bedrock for the repository in Korea. It was shown that repository area and excavation volumes can be determined by the pitch or distance between canisters. Pitch can be reduced to 0.6 m assuming the tolerance temperature as 200$^{\circ}C$. Thermal concentration was reduced as storage time for cooling the canister passed. After 10 years of storage the thermal problems seemed to be negligible.

  • PDF

Electron Microburst Generation by Wave Particle Interaction

  • Lee, Jae-Jin;Hwang, Jung-A;Parks, George K.;Min, Kyoung-Wook;Lee, En-Sang
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.43.2-43.2
    • /
    • 2009
  • Electron microbursts are the intense electron precipitation which durations are less than one second. We measured the energy spectra of the microbursts from 170 keV to 340 keV with solid state detectors aboard the low-altitude (680km), polar-orbiting Korean STSAT-1 (Science and Technology SATellite). The data showed that the loss cone at these energies is empty except when microbursts abruptly appear and fill the loss cone in less than 50 msec. This fast loss cone filling requires pitch angle diffusion coefficients larger than ~ 10-2rad2/sec, while ~10-5 rad2/sec was proposed by a wave particle interaction theory. We recalculated the diffusion coefficient, and reviewed of electron microburst generation mechanism with test particle simulations. This simulation successfully explained how chorus waves make pitch angle diffusion within such short period. From considering the resonance condition between wave and electrons, we also showed ~ 100 keV electrons could be easily aligned to the magnetic field, while ~ 1MeV electrons filled loss cone partially. This consideration explained why precipitating microbursts have lower e-folding energy than that of quasi-trapped electrons, and supports the theory that relativistic electron microbursts that have been observed by satellite in-situ measurement have same origin with ~100 keV electron microbursts that have been usually observed by balloon experiments.

  • PDF

Influence of hot-pressing pressure on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • The prime objective of this research was to study the influence of hot-pressing pressure and matrix-to-reinforcement ratio on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon-composite. Secondary objectives included determination of the physical and mechanical properties of the resulting composite. The 'hybrid carbon-fiber-reinforced mesophase-pitch-derived carbon-matrix' composite was fabricated by hot pressing. During hot pressing, pressure was varied from 5 to 20 MPa, and reinforcement wt% from 30 to 70. Densification of all the compacts was carried at low impregnation pressure with phenolic resin. The effect of the impregnation cycles was determined using measurements of microstructure and density. The results showed that effective densification strongly depended on the hot-pressing pressure and reinforcement wt%. Furthermore, results showed that compacts processed at lower hot-pressing pressure, and at higher reinforcement wt%, gained density gradually during three densification cycles and showed the symptoms of further gains with additional densification cycles. In contrast, samples that were hot-pressed at moderate pressure and at moderate reinforcement wt%, achieved maximum density within three densification cycles. Furthermore, examination of microstructure revealed the formation of cracks in samples processed at lower pressure and with low reinforcement wt%.

An analysis of the thermal characteristics for optimal design and operation of the radiant heating panels (복사난방패널의 설계 및 운전을 위한 열적 특성 분석)

  • Lee, T.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.180-188
    • /
    • 1997
  • The theoretical analysis and experiment with simulator were performed to obtain the temperature distributions in radiant heating panel and heat supply from hot water to heating space for the purpose of the development of comfortable living space from a point of view of the improvement of air quality and the enhancement of system efficiency. The relations of various parameters, such as pipe pitch, room temperature as well as flow rate and temperature of hot water and so on, with the rate of heat supplied, mean temperature and maximum temperature difference at panel surface were discussed. The effects of these parameters were also verified on the thermal performance of heating panel using the relations which could be used for the optimal design and operation of the radiant heating panel.

  • PDF

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

Integrated Roil-Pitch-Yaw Autopilot Design for Missiles

  • Kim, Yoon-Hwan;Won, Dae-Yeon;Kim, Tae-Hun;Tahk, Min-Jea;Jun, Byung-Eul;Lee, Jin-Ik;An, Jo-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.129-136
    • /
    • 2008
  • An roll-pitch-yaw integrated autopilot for missiles is designed for compensation of dynamics coupling. The proposed autopilot is based on the classical control technique. The gains of the proposed autopilot are optimized by using co-evolutionary augmented Lagrangian method(CEALM). Several cost functions are compared in order to find feasible control gains. For a case that a bank angle of missiles is unknown, multiple models are used in the autopilot optimization. In nonlinear simulations as well as linear simulations, the proposed autopilot provided good performances.

A review regarding on design of engine-driven nickel-titanium file (임상가를 위한 특집 2 - 엔진구동형 니켈-티타늄 파일의 디자인에 관한 고찰)

  • Hwang, Ho-Keel
    • The Journal of the Korean dental association
    • /
    • v.51 no.10
    • /
    • pp.551-555
    • /
    • 2013
  • The purpose of this study was to give a guideline for selecting the nickel-titanium (NiTi) file by review from many studies. Since the early 1990s, several instrument systems manufactured from NiTi have been introduced into endodontic practice. The specific design characteristics vary, such as tip shape and size, cross sectional view, helix angle, and pitch space. Some of the early systems have been removed from the market or play only minor roles; others are still widely used. New designs continually are produced, but the extent to which clinical outcomes will depend on design characteristics is difficult to forecast. In this study, I have reviewed the different design characteristics in respect of the safety and efficiency. With the review from many studies, I concluded that the clinicians must be understand the specific design characteristics for selecting the ideal NiTi rotary instruments.

A Study on HAUSAT-2 Momentum Wheel Start-up Method (초소형위성 HAUSAT-2 모멘텀 휠 Start-up 방안 연구)

  • Lee, Byung-Hoon;Kim, Soo-Jung;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.73-80
    • /
    • 2005
  • This paper addresses a newly proposed start-up method of the HAUSAT-2 momentum wheel. The HAUSAT-2 is a 25kg class nanosatellite which is stabilized to earth pointing by 3-axis active control method. A momentum wheel performs two functions. It provides a pitch-axis momentum bias while measuring satellite pitch and roll attitude. Pitch control is accomplished in the conventional way by driving a momentum wheel in response to pitch attitude errors. Precession control and nutation damping are provided by driving the pitch axis magnetic torquer. A momentum wheel is nominally spinning at a particular rate and changes speed. This simulation study investigates the feasibility and performance of a proposed strategy for starting-up the wheel. A proposed strategy to start-up the wheel shows that a pitch momentum wheel can be successfully started-up to its nominal speed from rest and be stabilized to nadir pointing.