• Title/Summary/Keyword: pitch space

Search Result 283, Processing Time 0.022 seconds

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

Can relativistic electrons be accelerated in the geomagnetic tail region?

  • Lee, J.J.;Parks, G.K.;Min, K.W.;Lee, E.S.;McCarthy, M.P.;Hwang, J.A.;Lee, C.N.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.31.1-31.1
    • /
    • 2008
  • While some observations in the geomagnetic tail region supported electrons could be accelerated by reconnection processes, we still need more observation data to confirm electron acceleration in this region. Because most acceleration processes accompany strong pitch angle diffusion, if the electrons were accelerated in this region, strong energetic electron precipitation should be observed near earth on aurora oval. Even though there are several low altitude satellites observing electron precipitation, intense and small scale precipitation events have not been identified successfully. In this presentation, we will show an observation of strong energetic electron precipitation that might be analyzed by relativistic electron acceleration in the confined region. This event was observed by low altitude Korean STSAT-1, where intense several hundred keV electron precipitation was seen simultaneously with 10 keV electrons during storm time. In addition, we observed large magnetic field fluctuations and an ionospheric plasma depletion with FUV aurora emissions. Our observation implies relativistic electrons can be generated in the small area where Fermi acceleration might work.

  • PDF

Incorporation of Electromagnetic Ion cyclotron waveinto Radiation Belt environment model

  • Kang, Suk-Bin;Choi, Eunjin;Hwang, Junga;Kim, Kyung-Chan;Lee, Jaejin;Fok, Mei-ching;Min, Kyoungwook;Choi, Cheongrim;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.132.1-132.1
    • /
    • 2012
  • Radiation Belt Environment (RBE) model has developed to understand radiation belt dynamics as it considers whistler mode hiss and chorus waves which is responsible for relativistic electron acceleration and precipitation. Recently, many studies on electron loss by pitch-angle scattering have reported that elctromagnetic ion cyclotron (EMIC) wave is also responsible for main loss mechanism in dusk and equatorial regeion. Here, we attempt to incorporate EMIC into RBE model simulation code to understand more detailed physical dynamics in Radiation belt environemnt. We compare this developed model to data during storm events where both of electron loss and EMIC waves were detected.

  • PDF

Detector Mount Design for IGRINS

  • Oh, Jae Sok;Park, Chan;Cha, Sang-Mok;Yuk, In-Soo;Park, Kwijong;Kim, Kang-Min;Chun, Moo-Young;Ko, Kyeongyeon;Oh, Heeyoung;Jeong, Ueejeong;Nah, Jakyoung;Lee, Hanshin;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.177-186
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA) detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL) mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

Mechanical design of mounts for IGRINS focal plane array

  • Oh, Jae Sok;Park, Chan;Cha, Sang-Mok;Yuk, In-Soo;Park, Kwijong;Kim, Kang-Min;Chun, Moo-Young;Ko, Kyeongyeon;Oh, Heeyoung;Jeong, Ueejeong;Nah, Jakyuong;Lee, Hanshin;Pavel, Michael;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2014
  • IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors serves a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, a housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.

  • PDF

Modeling of Energetic Neutral Atom (ENA) Emissions During a Magnetic Storm for CINEMA/TRIO

  • Lee, Ensang;Kwon, Hyuk-Jin;Park, Jong-Sun;Seon, Jongho;Jin, Ho;Kim, Khan-Hyuk;Lee, Dong-Hun;Wang, Linghua;Lin, Robert P.;Parks, George K.;Sample, John;Roelof, Edward C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.117.1-117.1
    • /
    • 2012
  • Energetic neutral atoms (ENAs) are emitted by charge exchange collisions between energetic ions and cold neutral atoms. ENAs can be used as an alternative measure of the energetic ions in the source region because they maintain the energy and pitch angle of the source energetic ions. In the present study we present simulation results of the ENA emissions during a magnetic storm to be measured by the STEIN instrument onboard the CINEMA/TRIO satellites. The CINEMA/TRIO mission consists of three identical cubesats with low-altitude orbits. The STEIN instrument onboard each cubesat can measure ENAs with energies from ~4 keV to ~20 keV as well as suprathermal electrons and ions. The measurement of ENA emissions from ring current by STEIN is simulated using the models for energetic ring current ions and geocoronal neutral atoms. Especially we will discuss about the energy spectrum of the ENAs and the effect of transient variations of the ring current.

  • PDF

Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.19
    • /
    • pp.57-65
    • /
    • 2016
  • Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.

Voice-Based Gender Identification Employing Support Vector Machines (음성신호 기반의 성별인식을 위한 Support Vector Machines의 적용)

  • Lee, Kye-Hwan;Kang, Sang-Ick;Kim, Deok-Hwan;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.75-79
    • /
    • 2007
  • We propose an effective voice-based gender identification method using a support vector machine(SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model(GMM) using the mel frequency cepstral coefficients(MFCC). A novel means of incorporating a features fusion scheme based on a combination of the MFCC and pitch is proposed with the aim of improving the performance of gender identification using the SVM. Experiment results indicate that the gender identification performance using the SVM is significantly better than that of the GMM. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

Aerodynamic Damping Analysis of a Vane-type Multi-Function Air Data Probe

  • Lee, Yung-Gyo;Park, Young-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • Configuration design, analysis, and wind tunnel test of a vane-type multi-function air data probe (MFP) was described. First, numerical analysis was conducted for the initial configuration of the MFP in order to investigate aerodynamic characteristics. Then, the design was modified to improve static and dynamic stability for better response characteristics. The modified configuration design was verified through wind tunnel tests. The test results are also used to verify the accuracy of the analytical method. The analytically estimated aerodynamic damping provided by the Navier-Stokes equation solver correlated well with the wind tunnel test results. According to the calculation, the damping coefficient estimated from ramp motion analysis yielded a better correlation with the wind tunnel test than pitch oscillation analysis.

Investigation of the Downwash Induced by Rotary Wings in Ground Effect

  • Tanabe, Yasutada;Saito, Shigeru;Ooyama, Naoko;Hiraoka, Katsumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.20-29
    • /
    • 2009
  • There are concerns about the influence of the gust wind caused by helicopters affecting the moving vehicles while hovering over the road during rescue activities. For the understanding of such complicated flow. numerical simulation of a rotor hovering above the ground has been carried out, changing the rotor/ground clearances. The rotor thrust is kept constant. and the rotor control is determined by trim adjustments incorporated into the CFD algorithm. Collective pitch angle and the required power decreases with the rotor/ground clearance which agrees with experience. Changes of the flowfield near the rotor with regard to the rotor height are investigated based on the calculated results.