• Title/Summary/Keyword: pitch production

Search Result 185, Processing Time 0.027 seconds

An optimization framework of a parametric Octabuoy semi-submersible design

  • Xie, Zhitian;Falzarano, Jeffrey
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.711-722
    • /
    • 2020
  • An optimization framework using genetic algorithms has been developed towards an automated parametric optimization of the Octabuoy semi-submersible design. Compared with deep draft production units, the design of the shallow draught Octabuoy semi-submersible provides a floating system with improved motion characteristics, being less susceptible to vortex induced motions in loop currents. The relatively large water plane area results in a decreased natural heave period, which locates the floater in the wave period range with more wave energy. Considering this, the hull design of Octabuoy semi-submersible has been optimized to improve the floater's motion performance. The optimization has been conducted with optimized parameters of the pontoon's rectangular cross section area, the cone shaped section's height and diameter. Through numerical evaluations of both the 1st-order and 2nd-order hydrodynamics, the optimization through genetic algorithms has been proven to provide improved hydrodynamic performance, in terms of heave and pitch motions. This work presents a meaningful framework as a reference in the process of floating system's design.

Recent Progress of Hybrid Bonding and Packaging Technology for 3D Chip Integration (3D 칩 적층을 위한 하이브리드 본딩의 최근 기술 동향)

  • Chul Hwa Jung;Jae Pil Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.38-47
    • /
    • 2023
  • Three dimensional (3D) packaging is a next-generation packaging technology that vertically stacks chips such as memory devices. The necessity of 3D packaging is driven by the increasing demand for smaller, high-performance electronic devices (HPC, AI, HBM). Also, it facilitates innovative applications across another fields. With growing demand for high-performance devices, companies of semiconductor fields are trying advanced packaging techniques, including 2.5D and 3D packaging, MR-MUF, and hybrid bonding. These techniques are essential for achieving higher chip integration, but challenges in mass production and fine-pitch bump connectivity persist. Advanced bonding technologies are important for advancing the semiconductor industry. In this review, it was described 3D packaging technologies for chip integration including mass reflow, thermal compression bonding, laser assisted bonding, hybrid bonding.

  • PDF

Study on Optimal Design of Wind Turbine Blade Airfoil and Its Application (풍력발전기 블레이드의 에어포일 최적 설계 및 그 적용 연구)

  • Sun, Min-Young;Kim, Dong-Yong;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.465-475
    • /
    • 2012
  • This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of this folding blade. In general, in large-sized (MW) wind turbines, damage is prevented because of the use of a pitch control system. On the other hand, pitch control is not performed in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut-out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production.

Comparison of prosodic characteristics by question type in left- and right-hemisphere-injured stroke patients (좌반구 손상과 우반구 손상 뇌졸중 환자의 의문문 유형에 따른 운율 특성 비교)

  • Yu, Youngmi;Seong, Cheoljae
    • Phonetics and Speech Sciences
    • /
    • v.13 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • This study examined the characteristics of linguistic prosody in terms of cerebral lateralization in three groups of 9 healthy speakers and 14 speakers with a history of stroke (7 with left hemisphere damage (LHD), 7 with right hemisphere damage (RHD)). Specifically, prosodic characteristics related to speech rate, duration, pitch, and intensity were examined in three types of interrogative sentences (wh-questions, yes-no questions, alternative questions) with auditory perceptual evaluation. As a result, the statistically significant key variables showed flaws in production of the linguistic prosody in the speakers with LHD. The statistically significant variables were more insufficiently produced for wh-questions than for yes-no and alternative questions. This trend was particularly noticeable in variables related to pitch and speech rate. This result suggests that when Korean speakers process linguistic prosody, such as that of lexico-semantic and syntactic information in interrogative sentences, the left hemisphere seems to be superior to the right hemisphere.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).

Fuel Characteristics of Pitch Pine and Mongolian Oak Pellets Fabricated with Coffee Waste and Used Frying Oil as an Additive Using a Pilot-scale Flat-die Pellet Mills (식품부산물인 커피박과 폐식용유를 첨가제로 사용하여 파일럿 규모의 평다이 성형기로 제조한 리기다소나무 및 신갈나무 펠릿의 연료적 특성)

  • Yang, In;Jin, Xuanjun;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study evaluated the potential of coffee waste (CW) and used frying oil (UFO) as an additive in the production of pitch pine (PIP) and Mongolian oak (MOK) pellets. Ash contents obtained from CW and UFO were 0.5% and <0.1%, respectively. The calorific values of UFO (31.4 MJ/kg) and CW (26.3 MJ/kg) are higher than PIP (20.6 MJ/kg) and MOK (19.1 MJ/kg). For pellets fabricated using a pilot-scale flat-die pellet mill, regardless of fabricating conditions, moisture content (MC) and bulk density of PIP and MOK pellets satisfied the A1 wood pellet standard for residential and small-scale commercial uses, as designated by the National Institute of Forest Science (NIFOS) of the Republic of Korea. When CW was used as an additive, durability of PIP pellets made with 12%-MC sawdust and MOK pellets increased. The optimal conditions for producing PIP and MOK pellets could be by adding 20 mesh CW as an additive and the using of 12%-MC sawdust. However, durability of PIP pellets and ash content MOK pellets did not satisfy the A1 wood pellet standard of NIFOS. Thus, further research is needed to improve the properties of wood pellets with additives.

Characteristics of Hydrogen Production by Catalytic Pyrolysis of Plastics and Biomass (플라스틱 및 바이오매스의 촉매 열분해에 의한 수소 생성 특성)

  • Choi, Sun-Yong;Lee, Moon-Won;Hwang, Hoon;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.221-227
    • /
    • 2010
  • In this study, we consider gas generation characteristics on pyrolysis of eco-fuel which were made by mixing of Pitch Pine and Lauan sawdust as biomass and polyethylene, polypropylene, polystyrene as municipal plastic wastes with catalyst in fixed bed reactor. From the result of higher heating value(HHV) measurement and of ultimate analysis, the heating value of plastic wastes and a hydrogen content in plastic sample are higher than biomass. An activation energy was reduced by a catalyst addition. However the catalyst content influence over 5 wt% was insignificant. The yield of hydrogen from gasification of biomass containing plastic wastes such as polyethylene, polypropylene and polystyrene were obtained higher than that of sole biomass. The high temperature and mixture ratio of catalyst conditions induced to high hydrogen yield in most of the samples. As the influence of catalyst, the hydrogen yield by catalytic reaction was higher than non-catalytic reaction. We confirmed that Ni-$ZrO_2$ catalyst is more active in increasing the hydrogen yield in comparison with that of carbonate catalyst. The maximum hydrogen yield was 65.9 vol.%(Pitch Pine / polypropylene / 20 wt.% Ni-$ZrO_2$(1:9) at $900^{\circ}C$).

Properties Analysis for Small Elements Added Shadow Mask Materials

  • Kim, Ku-Hak;Kim, Chung-Ho;Kim, Dong-Soo;Kim, One-Seek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1053-1055
    • /
    • 2002
  • Recently CRT is getting large-sized, Flatness and High Fine Pitched in the meantime the raw material for shadow mask is in rapid progress of thinness, Low Thermal Expansion and high strength.Until now we have used AK(Aluminum Killed) & Invar(Fe-Ni alloy) materials for main raw material of shadow mask component. However recently Nb and Co addition and Nb+Co addition, which has advantage of Low Thermal Expansion and High Strength. has been developed as well as applying in mass production as CRT's trend has become more flat and fine pitch. Among of them, Co addition has been mass production as forming type (Flat CRT) with the beneficial effect of low thermal expansion & high strength for the first time. Since then Nb+Co addition has been used in mass production by the request of much higher strength of shadow mask component. In case of Nb addition, It's thermal expansion coefficient is a little lower than normal Invar and a little higher than Co addition, meanwhile Its Mechanical property is almost similar to Co Addition. The used samples of this experiment are 36%Ni + Fe, 32%Ni + 5%Co + Fe, 32%Ni + 5%Co + 0.3%Nb + Fe, 32%Ni + 0.3%Nb + Fe with heat treatment temperature of 600$^{\circ}C$, 650$^{\circ}C$, 700$^{\circ}C$, 750$^{\circ}C$, 800$^{\circ}C$, 850$^{\circ}C$, 900$^{\circ}C$ respectively under the condition of 15min holding time. After heat treatment, we have observed the change of mechanical property with addition of small elements through mechanical property investigation and metal structure observation as well as transition of thermal expansion coefficient by measuring of thermal expansion coefficient at 850$^{\circ}C$. In conclusion, 5%Co addition indicates that its thermal expansion coefficient is very similar under the condition of at 850$^{\circ}C$ for 15min 's heat treatment. From the experimental result it is suggested that Co addition is mostly suitable for Doming property and Nb addition is mostly suitable for Drop property.

  • PDF

Analysis of Heat Transfer Characteristics in Soil for Development of a Geothermal Heat Exchange System (지열 열교환시스템 개발을 위한 지중 열유동 특성분석)

  • Lee Y. B.;Cho S. I.;Kang C. H.;Jung I. K.;Lee C. G.;Sung J. H.;Chung S. O.;Kim Y. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.185-191
    • /
    • 2005
  • Importance of alternative energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in the protected cultivation sector in Korea needs to be reduced for profitability and global competition. But, study on geothermal energy to solve these problems has not been activated for Korean protected cultivation. This study was conducted to develop an optimized geothermal exchange system through fundamental test of heat transfer characteristics in soil such as thermal diffusivity, changes in soil temperature during heating and cooling operations, and restorations of soil temperature after the heater was fumed off, These issues were investigated using computer simulation for different depths. The simulated characteristics were evaluated through controlled tests. Simulated characteristics of heat transfer in the soil at different depths showed a reasonable agreement with the results of the controlled tests. All of computer simulation and controlled tests, soil temperatures changed at 10cm and 20cm distance from pipe. but don't change at more than 30cm distance. It means that distances of heat transfer of the soil ranged from 20 to 30cm a day. Based on these results, the optimum spacing between adjacent heat exchange pipes and the pitch were selected as 50 and 40cm, respectively.

Numerical and experimental investigation on the global performance of a novel design of a Low Motion FPSO

  • Peng, Cheng;Mansour, Alaa M.;Wu, Chunfa;Zuccolo, Ricardo;Ji, Chunqun;Greiner, Bill;Sung, Hong Gun
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.427-439
    • /
    • 2018
  • Floating Production Storage and Offloading (FPSO) units have the advantages of their ability to provide storage and offloading capabilities which are not available in other types of floating production systems. In addition, FPSOs also provide a large deck area and substantial topsides payload capacity. They are in use in a variety of water depths and environments around the world. It is a good solution for offshore oil and gas development in fields where there is lack of an export pipeline system to shore. However due to their inherently high motions in waves, they are limited in the types of risers they can host. The Low Motion FPSO (LM-FPSO) is a novel design that is developed to maintain the advantages of the conventional FPSOs while offering significantly lower motion responses. The LM-FPSO design generally consists of a box-shape hull with large storage capacity, a free-hanging solid ballast tank (SBT) located certain distance below the hull keel, a few groups of tendons arranged to connect the SBT to the hull, a mooring system for station keeping, and a riser system. The addition of SBT to the floater results in a significant increase in heave, roll and pitch natural periods, mainly through the mass and added mass of the SBT, which significantly reduces motions in the wave frequency range. Model tests were performed at the Korea Research Institute of Ships & Ocean Engineering (KRISO) in the fall of 2016. An analytical model of the basin model (MOM) was created in Orcaflex and calibrated against the basin-model. Good agreement is achieved between global performance results from MOM's predictions and basin model measurements. The model test measurements have further verified the superior motion response of LM-FPSO. In this paper, numerical results are presented to demonstrate the comparison and correlation of the MOM results with model test measurements. The verification of the superior motion response through model test measurements is also presented in this paper.