• Title/Summary/Keyword: pitch peak

Search Result 139, Processing Time 0.02 seconds

Drag Reduction of a Circular Cylinder With O-rings (O-ring을 이용한 원주의 항력감소에 관한 실험적 연구)

  • Lim, Hee-Chang;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1174-1181
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167 D, 0.05D and 0.067 D with pitches of PPD=2D, 1D, 0.5D and 0.25D. The drag force, mean velocity and turbulence Intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of Re$_{D}$=7.8$\times$10$^3$~1.2$\times$10$^{5}$ . At Re$_{D}$=1.2$\times$10$^{5}$ , the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared that with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.der.

Artificial neural network model using ultrasonic test results to predict compressive stress in concrete

  • Ongpeng, Jason;Soberano, Marcus;Oreta, Andres;Hirose, Sohichi
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • This study focused on modeling the behavior of the compressive stress using the average strain and ultrasonic test results in concrete. Feed-forward backpropagation artificial neural network (ANN) models were used to compare four types of concrete mixtures with varying water cement ratio (WC), ordinary concrete (ORC) and concrete with short steel fiber-reinforcement (FRC). Sixteen (16) $150mm{\times}150mm{\times}150mm$ concrete cubes were used; each contained eighteen (18) data sets. Ultrasonic test with pitch-catch configuration was conducted at each loading state to record linear and nonlinear test response with multiple step loads. Statistical Spearman's rank correlation was used to reduce the input parameters. Different types of concrete produced similar top five input parameters that had high correlation to compressive stress: average strain (${\varepsilon}$), fundamental harmonic amplitude (A1), $2^{nd}$ harmonic amplitude (A2), $3^{rd}$ harmonic amplitude (A3), and peak to peak amplitude (PPA). Twenty-eight ANN models were trained, validated and tested. A model was chosen for each WC with the highest Pearson correlation coefficient (R) in testing, and the soundness of the behavior for the input parameters in relation to the compressive stress. The ANN model showed increasing WC produced delayed response to stress at initial stages, abruptly responding after 40%. This was due to the presence of more voids for high water cement ratio that activated Contact Acoustic Nonlinearity (CAN) at the latter stage of the loading path. FRC showed slow response to stress than ORC, indicating the resistance of short steel fiber that delayed stress increase against the loading path.

Experimental Study on the Aerodynamic Characteristics of a Two-Stage and a Counter-Rotating Axial Flow Fan (2단 축류홴과 엇회전식 축류홴의 공력특성에 관한 실험적 연구)

  • Cho, Jin-Soo;Cho, Lee-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1281-1292
    • /
    • 2001
  • Experiments were done for the comparison of performance and flow characteristics between a two -stage axial flow fan and a counter-rotating axial flow fan. Each stage of the two -stage axial flow fan used fur the present study has an eight bladed rotor and thirteen slater blades. The front and the rear rotor of the counter - rotating axial flow fan have eight blades each and are driven by coaxial counter ro latins shafts through a gearbox located between the rear rotor and the electric motor. Both of the two axial fan configurations have identical rotor blades and the same operating condition fur the one -to-one comparison of the two. Performance curves of the two configurations were obtained and compared by varying the blade pitch angles and axial gaps between the blade rows. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fa n flow characteristics were measured using a five-hole probe by a non-nulling method. The velocity profiles between the hub and tip of the fans were measured and analyzed at the particular operating condition s of peak efficiency, minimum and maximum pressure coefficients. The peak efficiency of the counter-rotating axial fan was improved about 2% respectively, compared with the two stage axial fan. At the minimum pressure coefficient point of the two stage axial fan, the fan inlet flow patterns show that axial velocity highly decreased in the vicinity of the blade tip region. Also, the reverse flow took place at the blade tip.

New Parameter on Speech and EGG; Glottal Closure Delay Ratio (음성신호와 전기성문파를 이용하는 새로운 매개변수 ; 성대 폐쇄 지연비율(Glottal Closure Delay Ratio))

  • Choi, Jong-Min;Kwon, Tack-Kyun;Jung, Eun-Jung;Lee, Myung-Chul;Kim, Kwang-Hyun;Sung, Myung-Whun;Park, Kwang-Suk
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.18 no.1
    • /
    • pp.22-25
    • /
    • 2007
  • Background and Objectives: Biomedical signals have been usually used for the diagnosis of the laryngeal function such as speech, electroglottograph(EGG), airflow and other signals. But, in most cases these signals were analysed separately. Here, we propose a new interchannel parameter Glottal Closure Delay Ratio(GCDR) which is estimated from speech and EGG measured simultaneously. Materials and Method: Speech and EGG signal were recorded simultaneously from 13 normal subjects, 39 patients. The patients' data included 16 polyps and 23 vocal folds palsy. Time difference between glottal closing instance on EGG and the first maximum peak on speech in a pitch period was calculated. Glottal closing instance was defined as the maximum peak on the first derivative of EGG signal(dEGG). Results: The standard deviation and jitter were calculated using 20-30 GCDRs extracted from each data, and they are significant different between normal and vocal fold paralysis group. Conclusion: The GCDR may be the first index reflecting speech and EGG characteristics and the perturbation of this parameter was significant different between normal and vocal fold paralysis group.

  • PDF

A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel (풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구)

  • Ui-Jin Hwang;Jae-Sang Park;Myeong-Kyu Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.45-55
    • /
    • 2023
  • This study conducted aeromechanics modeling and structural load analyses of Tilt Rotor Aeroacoustic Model (TRAM), a 25% scaled V-22 tiltrotor model used in wind tunnel tests. A rotorcraft comprehensive analysis code, CAMRAD II, was used. Analysis results of this study in low-speed forward flights were compared with DNW test and previous analysis results. Blade flap bending moments were in good agreement with measured data. Mean values and oscillatory loads for lead-lag bending and torsion moments were slightly different from measured data. However, when mean values were removed, results of structural loads for one rotor revolution were moderately compared with wind tunnel tests and previous analyses. Total forces and half peak-to-peak forces of the pitch link reasonably well matched with previous analysis results and measured data. Finally, harmonic magnitudes of blade structural loads were investigated.

Performance Evaluation of Speech Recognition Using the Reconstructed Feature Parameter with Voiced-Unvoiced Measure (유ㆍ무성음 척도를 포함한 재구성 특징 파라미터의 음성 인식 성능평가)

  • 이광석;한학용;고시영;허강인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.177-182
    • /
    • 2003
  • In this study, we research the robust speech recognition for the syllables and phoneme units with the feature parameter including the voiced-unvoiced measures for the confusable words. In order to make it possible, we propose the measure representing the voiced-unvoiced degree by using the HPS(Harmonic Product Spectrum) information, used on pitch detection. We proposed this measures with the sharpnes, peak count and height measure of HPS. We reconstructed the feature parameter including this measures, then we performs the speech recognition experiments and compared with the typical feature parameters under the CVC type confusable syllables DB.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

Four-beam Interference Optical System for Laser Micro- structuring Using Picosecond Laser

  • Noh, Ji-Whan;Lee, Jae-Hoon;Shin, Dong-Sig;Sohn, Hyon-Kee;Suh, Jeong;Oh, Jeong-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • A four beam interference optical system for laser micro structuring using a pulse laser was demonstrated. The four beam interference optical system using a pulse laser(picosecond laser) can fabricate micro structure on mold material(NAK80) directly. Micro structure on the polymer can be reproduced economically by injection molding of the micro structure on the mold material. The four beam interference optical system was composed by the DOE(Diffractive Optical Element) and two lenses. The laser intensity distribution of four beam interference was explained by an interference optics point of view and by the image optics point of view. We revealed that both views showed the same result. The laser power distribution of a $1{\mu}m$ peak pattern was made by the four beam interference optical system and measured by the objective lens and CCD. A $1{\mu}m$ pitch dot pattern on the mold material was fabricated and measured by SEM(Scanning Electron Microscopy).

The effect of the Modified Voiced Lip Trill (MVoLT) training on vocal changes of musical theater students (응용 입술 트릴 훈련이 뮤지컬 전공 학생의 음성 변화에 미치는 효과)

  • Lee, Seung Jin;Choi, Hong-Shik;Lim, Jae-Yol;Lee, Kwang Yong
    • Phonetics and Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.135-146
    • /
    • 2018
  • The Modified Voiced Lip Trill (MVoLT) training is a variant of voiced lip-till training characterized by increased loudness, lowered laryngeal position, and lip contact facilitated with fingers. The purpose of the current study was to assess the effect of the MVoLT training program on vocal changes of musical singing theater students. A total of 32 musical theater students (17 males and 15 females, age ranging from 18 to 29) participated in the study. For about three months, each participant was tutored using a systematic program focussing on the MVoLT training, accompanied by certain facilitating strategies. Pre- & post-training multi-dimensional vocal characteristics were assesed and compared. Results showed that cepstral peak prominence during vowel phonation increased after training, while its standard deviation and Cepstral Spectral Index of Dysphonia decreased. When an aerodynamic assessment was performed, maximum phonation time, subglottal pressure, mean airflow rate increased, while electroglottographic measures did not change. In addition, decreased psychometric measures, higher maximum pitch, and increased vocal range were noted after training. In conclusion, the MVoLT was proven to have a potential as an effective and safe training method for musical theater singing.

Numerical Investigation of Motion Response of the Tanker at Varying Vertical Center of Gravities

  • Van Thuan Mai;Thi Loan Mai;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The vertical center of gravity (VCG) has a significant impact on the roll motion response of a surface ship, particularly oil tankers based on the oil level in the tanker after discharging oil at several stations or positional changes, such as changes in the superstructure and deck structure. This study examined the motion response of the Korea very large crude carrier 2 (KVLCC2) at various VCGs, especially roll motion when the VCG changed. The potential theory in the Ansys AQWA program was used as a numerical simulation method to calculate the motion response. On the other hand, the calculations obtained through potential theory overestimated the roll amplitudes during resonance and lacked precision. Therefore, roll damping is a necessary parameter that accounts for the viscosity effect by performing an experimental roll decay. The roll decay test estimated the roll damping coefficients for various VCGs using Froude's method. The motion response of the ship in regular waves was evaluated for various VCGs using the estimated roll-damping coefficients. In addition, the reliability of the numerical simulation in motion response was verified with those of the experiment method reported elsewhere. The simulation results showed that the responses of the surge, sway, heave, pitch, and yaw motion were not affected by changing the VCG, but the natural frequency and magnitude of the peak value of the roll motion response varied with the VCG.