• 제목/요약/키워드: piston ring

검색결과 140건 처리시간 0.025초

피스톤계 마찰 측정 장치 개발 (Development of Piston Friction Force Measurement System)

  • 하경표;김중수;조명래;오대윤
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1608-1614
    • /
    • 2002
  • This Paper presents a novel piston friction force measurement system that has characteristics of relieving the Pressure force acting on the upper surface of the liner; the system uses general rubber O-rings for combustion chamber sealing, and does not need special changes to the piston top land. The lower supporter of the floating liner increases stiffness in liner axial direction, and results in the increase of natural frequency. The upper supporter has multi-layer structure designed fer low axial stiffness and high radial stiffness. With the use of the present system, the effects of variation in clearance and piston ring tension were studied.

EGR시스템 디젤기관의 실린더 및 피스톤 마모에 미치는 재순환 배기의 영향에 관한 연구 (A Study on the Influences of Recirculated Exhaust Gas upon Wear of Cylinder and Piston in Diesel Engines with EGR System)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.827-835
    • /
    • 1998
  • The effects of recirculated exhaust gas on the wear of cylinder liner piston and piston rings have been investigated by the experiment with a two-cylinder four cycle indirect injection diesel engine operating at 75% load and 1600 rpm speed For the purpose of comparison between the rates of two cylinders with and without EGR the recirculated exhaust gas is sucked into one of two cylinders after the soot among exhaust emissions is removed by an intntionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diame-ter) while only the fresh air into another cylinder. These experiments are carried out on the fuel injection at a fixed $15.3^{\circ}$ BTDC timing. It is found that firstly the mean wear amount of cylinder liner with EGR is more increased in the measurement positions of the second half than of the first half and the mean wear amount without EGR is almost uniform regardless of measurement posi-tions secondly the wear rates of the first and second piston ring(compression ring)thickness with EGR are more than twice but the wear rate of oil ring thickness without EGR is more increased than that with EGR and finally the wear rate of piston skirt with EGR is a little bit increased but the piston hed diameter is rather increased owing to soot adhesion and corrosion wear and espe-cially larger with EGR.

  • PDF

피스턴마찰에 미치는 각 인자의 영향 (The influence of various factors on piston friction)

  • 이종태;이성열
    • 오토저널
    • /
    • 제5권1호
    • /
    • pp.45-53
    • /
    • 1983
  • There exist many kinds of frictions in internal combustion engine such as piston ring and skirt, cam and tappet, bearing friction etc. Among them, the frictions between piston ring, skirt and cylinder are particular. These frictions for motoring test are differ from that of firing test even though the temperature of cooling water and lubricating oil keep identically. The frictions for firing test are increased due to combustion pressure and products. The precise calculation of the friction is difficult. But we can assume that the friction is governed by the viscosity of lubricating oil and gas pressure of cylinder. And the viscosity of lubricating oil is dependant on gas temperature of cylinder, so the piston friction may be governed by gas pressure and temperature of cylinder. In this treatise, we propose the method of evaluating piston friction under the condition of constant engine speed, and we analyzed the behaviours and influence of factors concerned with the piston friction for output correction when the inlet pressure and temperature were varied. The main results are as follows: 1) The behaviours on the inlet conditions for the contact force of the piston rings and the viscosity of the lubricating oil concerned with piston friction are found. 2) The essential point the these behaviours is dependant on the cyclic variation following to the inlet conditions. 3) According to our analysis, It was observed that the viscosity of lubricating oil is more effective than the contact force to the piston rings.

  • PDF

유한 요소법을 이용한 피스턴 링의 윤활 해석 (Piston-Ring Lubrication Analysis Using Finite Element Method)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • 제8권1호
    • /
    • pp.38-43
    • /
    • 1992
  • In solving the Reynolds equation in dynamically loaded bearing problem, it is almost impossible to find the squeeze velocity and the cavitation region by analytical method. Finite Element Method was applied to the piston-ring lubrication analysis to solve the complementary problem. The method was very efficient and any convergence problem was not encountered.

스터링 기관의 피스톤 밀봉 기구에 관한 연구 (Studies on Piston Seal Mechanism of Stirling Engine)

  • 김태한
    • Journal of Biosystems Engineering
    • /
    • 제17권4호
    • /
    • pp.305-313
    • /
    • 1992
  • Stirling 기관(機關)의 피스톤 Seal부분에서의 마찰저항(摩擦抵抗)을 감소(減少)시킴과 동시 에 작동가스의 누설량(漏泄量)을 감소(減少)시켜서 기관출력(機關出力)을 증대(增大)시킬 목적(目的)으로 재질(材質) 및 밀봉(密封) 형식(形式)이 서로 다른 Piston ring식 밀봉기구(密封機構)와 금속(金屬) Bellows를 이용한 밀봉기구(密封機構)를 시작(試作)해서 마찰저항(摩擦抵抗)과 작동가스의 누설량(漏泄量)을 조사(調査)하고, 이들 밀봉기구(密封機構)를 실험(實驗) 기관(機關)에 장착(裝着)해서 운전시험(運轉試驗)을 통해 각 밀봉기구(密封機構)의 성능(性能)을 검토(檢討)하였다. 그 결과(結果) Bellows를 Power piston의 Actuator로 시작(試作)한 밀봉기구(密封機構)가 다른 Piston-ring식(式) 밀봉기구(密封機構)에 비(比)해, 피스톤링과 실린더벽 사이의 마찰저항(摩擦抵抗) 및 작동(作動)가스의 누설량(漏泄量)이 현저하게 감소(減少)하였으며, D-type은 B-type에 비해 도시출력(圖示出力)은 약 1.6배, 축출력(軸出力)은 약 1.2배로 증가(增加)하였다.

  • PDF

엔진피스톤링 홈의 크롬도금에 관한 연구 (A Study on Chromium Electroplating of Piston Ring Groove's Surface)

  • 문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.47-55
    • /
    • 1995
  • When the low heavy oil is using as fuel oil to the diesel engine, some problems such as corrosion resistance, wear resistance and heat resistance are happened in diesel engine's internal material, especially the adhesive wear of piston ring groove was occurred as a important problem. Therefore to prevent adhesive wear of its groove, the surface of its groove used to be electroplated with Chrominum and for its Chromium electroplating, Fe anode is being used until nowadays because of its Special shape. However in case of using Fe anode, there were some problems such as deterioation of solution, property of Chromium film, and condition of coation. In this paper Pb anode electroplated withPb to the steel plate was investigated for its Chromium electroplating for Pb's high corrosion resistance in acid solution, and Pb anode is not dissolved compared with Fe anode and deterioration degree of solution in case of Pb anode is smaller than that of Fe anode and also property of Chromium film was better than that of Fe anode. Moreover it was known that the optimum cathodic current density for Pb electroplating to steel plate as insoluable anode for Chromium coating of piston ring groove is 30mA/$cm^2$ by experimental results obtained.

  • PDF

디젤엔진 실린더 라이너-피스톤 링 소재의 연삭 마멸 특성 (Abrasive Wear Characteristics of Materials for Diesel Engine Cylinder Liner and Piston Ring)

  • 장정환;김정훈;김창희;문영훈
    • 열처리공학회지
    • /
    • 제20권2호
    • /
    • pp.72-77
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

디젤엔진 피스톤 링 코팅 층의 경도에 따른 마찰특성 (Effect of Coating Layer Hardness on Frictional Characteristics of Diesel Engine Piston Ring)

  • 장정환;주병돈;이호진;김은화;문영훈
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.465-470
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. The effect of surface roughness of cylinder liner on the friction coefficient was analyzed. This study provided tribological data of hard and soft piston ring coatings against cylinder liner. The surface roughness does exert an influence on the average friction coefficient, with smoother surfaces generally yielding lower friction coefficients. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics such as, scratch depth, width, pile-up height and elastic modulus.

EXPERIMENTAL STUDIES OF SCUFFING MECHANISM IN OIL LUBRICATED PISTON-RING/CYLINDER SLIDING CONTACTS

  • Shi, H.S.;Wang, H.;Hu, Y.Z.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.415-416
    • /
    • 2002
  • Experiments have been conducted to investigate scuffing mechanism in oil lubricated piston-ring /cylinder sliding contacts. Samples were extracted from actual components to simulate the real contact geometry and other influencing conditions. A standard test machine. with some modifications, has been used for the investigation of the effects of surface temperature load and sliding velocity. preliminary tests were carried out to find the critical temperature of scuffing using gradient temperature under a constant load, reciprocating frequency and stroke. The experimental and analytical results show that a transition from lubricated contact to adhesion, accompanied by the phenomena such as material transfer between the two sliding surfaces, local contact welding and temperature rise, and sharp increase in friction coefficient, appears to contribute to the final failure of scuffing.

  • PDF