• 제목/요약/키워드: piston pin

검색결과 52건 처리시간 0.026초

크랭크 핀의 질량관성을 고려한 엔진 베어링의 틈새 거동 연구 (Study on the Dynamic Behaviors of Engine Bearing with the Inertia Effect of Crank Pin Journal)

  • 장시열
    • Tribology and Lubricants
    • /
    • 제21권1호
    • /
    • pp.39-45
    • /
    • 2005
  • Investigation of the mass effect on the journal traces in the clearance of engine bearing has been performed for better design of mass distribution of crank system components such as crank pin, piston, con-rod, balance weight, crank throw weight, etc. as well as for better oil reaction behaviors to the applied forces from the cylinder pressures on the bearing. In this preliminary study, crank pin traces in the engine bearing clearance are computed by varying the equivalent magnitude of crank pin mass that includes the masses of crank pin, piston, con-rod. etc.. while most previous studies regarding journal traces in the bearing clearance neglect the inertia effects of crank pin mass. Although the inertia effect of pill mass is negligibly small compared to viscous force by ${\pi}bearing$ theory, it is found that it gives a great amount of influences on the journal traces in full bearing computation $(2\pi\;bearing\;theory)$ under the dynamic loading conditions.

디젤기계의 피스톤 열부하 특성에 관한 연구 (Themally Loaded Characteristics of Diesel Engine Piston)

  • 한문식;박태인
    • 한국기계연구소 소보
    • /
    • 통권15호
    • /
    • pp.91-103
    • /
    • 1985
  • In this paper, temperature distribution and thermal stress are investigated considering engine peak pressure and the time average temperature distribution in the piston under running conditions for the diesel engine. The induced stress are calculated by the Finite Element Method(FEM). The results obtained are summerized as follows. 1) The results calculated by the FEM present good agreement with other numerical solution in literature. 2) It is confirmed that maximum compressive stress are induced in the part of outside wall between the piston crown and the pin bush. 3) In the axial direction, the hoop stresses are changed its sigh at the portion of crown near the inner wall side 4)Large gradient of temperature is shown in the piston crown near the side wall in the axial direction, in the part between the piton crown and the pin bush in radical direction 5)in case of stress distribution of piston wall surface in the axial direction, the hoop stress is a little greater than axial stress, and the latter is greater than the radial stress

  • PDF

디젤엔진 실린더 라이너-피스톤 링의 코팅 층 강도에 따른 마모특성 연구 (Effect of Coating Layer Hardness on the Wear Characteristics of Diesel Engine Cylinder liner-Piston Ring)

  • 장정환;김정훈;김창희;문영훈
    • 소성∙가공
    • /
    • 제17권5호
    • /
    • pp.343-349
    • /
    • 2008
  • The wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. This study will discuss characteristics of wear between hard and soft piston ring coatings with running surface of cylinder liner. Detailed tribological analysis by using Pin-on-Disk(POD) testing machine describes the lubricity mechanism between piston ring coatings and cylinder liner at different temperature with and without oil. The effect of surface roughness of the cylinder liner on the friction coefficient and wear amount of piston ring coatings will also be analyzed. To simulate scuffing mechanism between piston ring and cylinder liner, accelerated lab testing was performed. This study will provide the data from tribological testing of hard and soft piston ring coatings against cylinder liner. Furthermore, the microstructures and morphological features of the surface and the near-surface materials during wear will be investigated. From the scuffing test by using POD testing machine, scuffing mechanisms for the soft and hard coating will be analyzed and experimentally confirmed.

탄성변형을 고려한 피스톤 스커트의 마찰 손실 해석 (Analysis of Frictional Power Loss Due to the Effects of Elastic Deformation in the Piston Skirt Profile)

  • 조준행;장시열
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.385-396
    • /
    • 2000
  • The secondary motion of piston occurs due to the transient forces and moments in the clearances between piston skirt and cylinder liner The motions are very related to the skirt profile and the magnitude of piston-pin offset. Above all, the elastic deformation is another major effect on the piston secondary motion that has not been considered in the previous researches. In this work, the effects of elastic deformation of the piston skirt on the secondary piston motion are studied for the frictional power loss by using commercial softares, PISDYN and ANSYS.

  • PDF

자동차용 피스톤-핀의 유동결함 방지를 위한 공정설계 (Process Design to Prevent Flow Defect of Piston-Pin for Automobile)

  • 김동진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.155-158
    • /
    • 2000
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In cold forging of piston-pin Lapping defect a kind of flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The finite element simulations are applied to analyze the flow defect. This study proposed processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experiments for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF

내연기관용 무연 핀부싱의 마찰특성에 관한 실험적 연구 (Experimental Study on Friction Characteristics of Pb-free Pin Bushing for an Internal Combustion Engine)

  • 김청균;오경석
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.306-311
    • /
    • 2007
  • This paper presents the friction characteristics of pb-fres pin bushing bearings for an automotive gasoline engine. The external load is 100 N to 600 N and the speed of the pin bushing bearing is 1000 rpm to 3000 rpm against the rubbing surfaces. And the contact modes of rubbing surfaces between a piston pin and a pb-free pin bushing specimen are a dry friction, an oil lubricated friction and a mixed friction that is starved by a lack of engine oil. Two influential factors of a contact rubbing modes and a material property are very important parameters on the tribological performance of a friction characteristic between a piston pin and a pb-free pin bushing. The experimental result shows that the pin bushing speed of 2000 rpm shows a typical oil film lubricated sliding contact mode in which means that as the applied load is increased, the friction loss is increasing. But other contact mode depending on the speed and the load may affect to the fiction coefficient without a regular and uniform trend. In summary, the oil lubricated rubbing surface definitely decreases a running-in period in short and increase oil film stiffness, and this may leads the reduction of a friction loss.

피스톤 스커트 형상에 따른 마찰 손실 해석 (Analysis of Frictional Power Loss by the Effects of Piston Skirt Profiles)

  • 조준향;이준경;장시열
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.227-236
    • /
    • 2000
  • The secondary motion of piston greatly influences the dynamic and frictional performances of an engine. The motion is very related to the clearance, sliding velocity and skirt profile, etc. In our work, piston dynamics is analyzed with the commercial analysis software, PISDYN by Ricardo Consultant Engineers, Inc. The effects of profiles with piston pin offsets are studied regarding the secondary motion of piston and several results are compared.

  • PDF

통계적 파괴확률에 의한 Sin/Hip 질화규소의 신뢰도 분석(III) (Reliability Analysis of Statistical Failure Probability in Sin/Hip $Si_3N_4$ (III))

  • 송진수;이재석;김해일;이준근
    • 한국세라믹학회지
    • /
    • 제28권4호
    • /
    • pp.279-288
    • /
    • 1991
  • KIST/CARES reliability analysis program was used to calculate failure probabilities of piston pin and poppet valve. The 4-point bending test was performed on Sin/Hip Si3N4 for obtaining material parameters such as m, $\sigma$o, and KB, and the finite element analysis was performed using MSC/NASTRAN for obtaining stress distribution. The calculated failure probability of piston pin was lower than 10-6 and the failure probaility of poppet valve was greater than 0.95.

  • PDF

왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석 (Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.

회전익 항공기 구조건전성 향상을 위한 주륜착륙장치 결함 개선연구 (The Study on Improvement about Structural Integrity of Main Landing Gear for Rotorcraft)

  • 장민욱;이윤우;서영진;지상용
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.459-467
    • /
    • 2019
  • 착륙장치는 회전익 항공기 및 탑승 병력의 생명을 보호해야 하는 고도의 안전성이 요구되는 주요 구성품으로 이/착륙 시 충격을 흡수하고 지상에서 활주 및 계류 시 동체를 지지한다. 특히 항공기 동체를 지지하는 주륜 착륙장치는 지면으로부터 시작되는 충격을 완충장치와 타이어를 통해 대부분 흡수하는 역할을 수행하게 되는데, 이를 통해 항공기에 탑승한 조종사의 안전을 보장하고, 임무 수행 간 병력의 작전 운용능력을 만족시킨다. A 기종 회전익 항공기 운용 중에, 우측 주륜 착륙장치 구성품인 피스톤 핀(Piston Pin)이 다수 파손된 것이 확인되었다. 따라서 본 연구에서는 주륜 착륙장치에서 발견된 피스톤 핀(Piston Pin) 균열 현상에 대한 근본적인 원인을 찾기 위해, 파면 분석에서부터 비행 시험을 통한 착륙 하중 해석에 이르기까지 다양한 원인 규명 방법을 모색하였다. 특히 개발 당시 피스톤 핀에 적용되었던 드래그 빔(Drag beam) 구성품과의 체결 토크에 대한 영향성을 토대로 균열 발생 가능성들에 대한 분석을 수행하였으며, 이를 통해 피로 수명과 구조건전성을 확보할 수 있는 방안을 제시하였다.