• Title/Summary/Keyword: piston pin

Search Result 52, Processing Time 0.025 seconds

A Study on the Effect of Piston Pin Offset on a Piston Motion and Kinetic Energy Loss (피스톤핀 옵셋이 피스톤운동과 운동에너지 손실에 미치는 영향에 관한 연구)

  • Han, D.J.;Choi, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • A theoretical analysis of predicting the detailed motion of a piston-crank mechanism within piston-guide clearance is presented, and the analysis is applied to the piston motion in a gasoline engine. A piston movement program is developed to calculate the piston attitude relative to the bore, the piston to bore impact velocity and kinetic energy loss and the net transverse force acting on the piston. This paper presents the formulation of a set of differential equations governing the transverse and rotational motion of a piston. These equations of motion were solved by well established Runge-Kutta method. As a result of this study, it is possible to predict the effects of piston geometry and piston pin offset on a piston motion and kinetic energy loss.

  • PDF

A Study on Wear Characteristics of Piston Running Part (피스톤 런닝부의 소재에 따른 마모특성 연구)

  • Jang, J.H.;Yi, H.K.;Joo, B.D.;Lee, J.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.375-378
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

  • PDF

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile (자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Dong-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

A Comparisonal Analysis Among the Processes of Piston -Pin Production (Piston-Pin 제작공정의 비교해석)

  • 김장군;장동환;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.130-137
    • /
    • 1996
  • Several cold extrusion processes to produce an axisymmetric steel piston-pin are investigated for comparing each other. Two methods among four conventinal ones are selected to be simulated using the rigid-plastic finite element method. One of the both methods using a mechanical press has one stage process and the other utilizing a cold header applies a multi-stage process to produce a final product. Because the main process is a backward extrusion, the design criteria such as the backward extrusion ration and punch diameter to depth rationare ocnsidered. FEM analysis is performed mainly for strain distributin and load-stroke relationshis. Based on the results of preliminary simulatin, both process sequences are proved to have proper charicteristics suitable for each production method in terms of maximum load. Those simulation results will be a good design criteria in the future work to advance the manufacturing process.

  • PDF

A Study on the Measurement of Oil-Film Pressure in Engine Connecting Rod Bearing and Piston Pin-Boss by Thin-Film Sensor

  • Mihara, Yuji;Someya, Tsuneo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.409-410
    • /
    • 2002
  • In order to measure the oil-film pressure in sliding surface of machinery, we have developed a piezo-resistive type thin-film pressure sensor. To reduce the measurement error due to temperature and strain, the constituent of the pressure sensitive alloy was optimized and a new sensor shape was devised. In this study, we present the measurement results of the oil-film pressure distribution in engine connecting rod big-end bearing and piston pin- bosses with 3 different pin-boss shapes using the newly developed thin-film pressure sensor.

  • PDF

A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities (오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구)

  • Kim, Chung-Kyun;Lee, Byoung-Kwan
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.

Stress analysis of marine diesel engine piston (선박용 디젤기관의 피스톤 응력해석)

  • 한문식;김상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.143-152
    • /
    • 1985
  • In this paper, temperature distribution and thermal stress are investigated considering engine peak pressure and the time average temperature distribution in the piston under running conditions for the marine diesel engine. The induced stress are calculated by the Finite Element Method (FEM). The results obtained are summerized as follows. 1) The results calculated by the FEM present good agreement with other numerical solution in literatures. 2) It is comfirmed that the maximum compressive stresses are induced in the part of outside wall between the piston crown and the pin bush 3) In the axial direction, the hoop stresses are changed its sign at the portion of crown near the inner wall side. 4) Large gradient of temperature is shown in the piston crown near the side wall in the axial direction, in the part between the piston crown and the pin bush in radial direction. 5) In case of stress distribution of piston wall surface in the axial direction, the hoop stress is a little greater than axial stress, and the latter is greater than the radial stress.

  • PDF

Abrasive Wear Characteristics of Materials for Diesel Engine Cylinder Liner and Piston Ring (디젤엔진 실린더 라이너-피스톤 링 소재의 연삭 마멸 특성)

  • Jang, Jeong-Hwan;Kim, Jung-Hoon;Kim, Chang-Hee;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

Analysis of the Effects of Bore Clearance Due to Skirt Profile Changes on the Piston Secondary Movements

  • Jang, Siyoul
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.84-89
    • /
    • 2002
  • Clearance movements of engine piston are very related to the piston impact to the engine block as well as many tribological problems. Some of the major parameters that influence these kinds of performances are piston profiles, piston offsets and clearance magnitudes. In our study, computational investigation is performed about the piston movements in the clearance between piston and cylinder liner by changing the skirt profiles and piston offsets. Our results show that curved profile and more offset magnitude to thrust side have better performance that has low side impact during the engine cycle.