• Title/Summary/Keyword: piston effect

Search Result 275, Processing Time 0.02 seconds

Effect of DLC Coating-layer on Engine Wear Characteristics for Improving Fuel Consumption of Automotive Engine (차량연비 향상을 위한 DLC 코팅 층이 엔진 마모특성에 미치는 영향)

  • Kim, Kee-Joo;Yoo, Seok-Jong;Choi, Byung-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.112-119
    • /
    • 2010
  • Recently, as the matters of environmental pollution, the energy exhaustion and alternative energy source have become more important issues, around industrial countries and the effort to improve fuel consumption is progressed continuously for decrease of air pollution. In an effort to improve fuel consumption for passenger cars, the study of DLC (Diamond Like Carbon) coating which is widely known to good wear characteristics come to the forefront. Therefore, in present study, it was investigated to the influence of DLC coating layer for wear characteristics with the piston ring material and then suggested to the development process for advanced automotive engine parts that showed improved wear characteristics. From these results, Finally, it will be contributed to improve the fuel consumption for passenger vehicles.

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

Effects of Injection Timing and Intake Flow on In-Cylinder Fuel Behavior in a GDI Engine (직접분사식 가솔린 엔진에서 분사시기와 흡입유동이 실린더 내 연료의 거동에 미치는 영향)

  • 이정훈;강정중;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.7-13
    • /
    • 2003
  • The purpose of this study is to investigate the effect of the in-cylinder flows and different injection timings on fuel behavior in the cylinder of a GDI engine. Three different flows types induced by using masked port, unmasked port, and port deactivation were tumble, swirl&tumble, and high swirl respectively. LIEF technique was applied to investigate the mixture formation and fuel distribution at ignition time in the transparent engine with optical access through the piston top and upper part of cylinder liner. Injection timings of 180,90, and 60 degrees before TDC were examined. It was found that tumble flow was more effective on the homogeneous mixture formation than other flow and swirl flow transported more fuel vapor to the exhaust side at early injection mode, and swirl and swirl & tumble flow made fuel vapor concentrate around the cylinder center at late injection mode.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 2 - Effect of Dimple Location (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제2보 - 딤플 위치의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • In the last decade, laser surface texturing (LST) has emerged as a viable option of surface engineering. Many problems related with mechanical components such as thrust bearings, mechanical face seals and piston rings, etc, LST result in significant improvement in load capacity, wear resistance and reduction in friction force. It is mainly experimentally reported the micro-dimpled bearing surfaces can reduce friction force, however, precise theoretical results are not presented until now. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is used to investigate the lubrication characteristics of a parallel thrust bearing having 3-dimensional micro-dimple. The results show that the pressure, velocity and density distributions are highly affected by the location and number of dimple. The numerical method and results can be use in design of optimum dimple characteristics, and further researches are required.

The Effect of Engine Oil Degradation and Piston Top Ring Groove Temperature on Carbon Deposit Formation Part II - The Deposit Formation Characteristics of Diesel Engine (엔진 오일 열화와 피스톤 톱링 그루브 온도가 카본 디포짓 형성에 미치는 영향 Part II-디젤 엔진의 디포짓 형성 특성)

  • 김중수;민병순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.108-113
    • /
    • 1998
  • In order to investigate the characteristics of top ring groove deposit formation in diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, soot content in engine oil was selected as a main parameter for evaluating oil degradation. Deposit formation is highly related to soot content in lubricating oils. And high soot content oil accelerates deposit formation even in low temperature region below 26$0^{\circ}C$. In low temperature region below 26$0^{\circ}C$, deposit formation rate is mainly affected by top ring groove temperature. However, in high temperature region above 26$0^{\circ}C$, deposit formation rate is affected by soot content as well as top ring groove temperature. Therefore, soot content as well as top ring groove temperature should be kept a certain level in order to prevent troubles due to carbon deposit formation.

An Engine Structure-Borne Noise Analysis by Finite Element Method (유한요소법에 의한엔진 구조소음 해석)

  • 안상호;김주연;김규철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.122-133
    • /
    • 1998
  • This paper presents the static analysis, the modal analysis and the forced vibration analysis on engine structures to find out the structure-borne noise sources by finite element method. The deformation of engine structures under the maximum combu- stion gas force was calculated through the static analysis, and the resonance possibilities were predicted by the modal analysis which ascertains mode shapes and the corresponding frequencies of engine global and its major noise sources in engine surfaces were investigated with the forced vibration analysis by means of finding the transfer mobilities on engine surfaces due to the piston impact and the velocity levels due to the combustion in consideration of oil film stiffness and damping coefficients. Finally, the direction of engine structure-borne noise reduction can be estabilished by the above-mentioned analysis procedure and the reduction effect of cost on proto-type engine build-up is expected.

  • PDF

The Effect of Combustion Process by Intensifying the Air Flow in Combustion Chamber of D.I. Diesel Engine (직접분사식 디젤기관의 연소실내 공기유동강화가 연소과정에 미치는 영향)

  • Bang, Joong-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.153-159
    • /
    • 2007
  • The performance of a direct-injection type diesel engine often depends on the strength of air flow in the cylinder, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In the present paper, high speed photography was employed to investigate the effectiveness of holes penetrated from the bottom of cavity wall to piston crown for some more useful utilization of air. The holes would function to improve mixing of fuel and air by the increase of air flow in the cylinder. The results obtained are summarized as follows, (1) Activated first of the combustion by shorten of ignition timing and rapid flame propagation (2) Raised the combustion peak pressure, more close to TDC the formation timing of peak pressure.

Characteristic Comparison on Internal Cushion Devices at High-speed Pneumatic Cylinders (고속 공기압 실린더 내장용 쿠션기구의 특성 비교)

  • Kim, Dotae;Zhang, Zhong Jie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.24-30
    • /
    • 2013
  • This paper studies the comparative analysis on two different internal cushion devices (the types of needle and relief valve) used to absorb the energy which is generated when the pneumatic cylinder moves with the load at meter-out speed control system. The effect at varying the piston velocity under same driving condition is mainly investigated. The simulation results on pressure in the cushion chamber and the dynamic behavior of the relief valve type cushion device are compared with the needle valve type. Design and performance are improved with the cushion configuration of better quality at high-speed pneumatic cylinder. Based on the relation between absorbed energy and impact energy at cushion process, cushion performance at pneumatic cylinder is evaluated.

Expression Characteristics of Chinese Cabbage

  • Kim, Y.J.;Oh, Y.T.;Lee, D.H.;Lee, Y.B.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1318-1328
    • /
    • 1993
  • Expression of chinese cabbage was conducted in order to investigate its dewatering behavior. Chipped cabbage was packed into cylinder and pressed by piston up to the predetermined pressure on Instron-1000. The rates of dewatering were affected domintantly by the applied pressure, but not significantly by the packed amount of cabbage in the cylinder. The pressure effect was increased very abruptly at first, but the increase rate was very low at high pressure greater than 20 MPa, showing great deviation from linear dependence of flow rate on pressure in Darcy's Law. Therefore, water expression from cabbage was not Newtonian flow of water through cell wall. In fact, the squeezed water contained a lot of solid particles, showing destruction of cell wall. The content of solid particles in expressed water was only slightly lower than the dry matter content of fresh chinese cabbage, determined by drying oven method.

  • PDF

Compression and Dewatering of Chinese Cabbage (배추의 압축탈수특성에 관한 연구)

  • Kim, Y.J.;Lee, D.H.;Lee, Y.B.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.3-8
    • /
    • 1994
  • An experiment on the expression and dewatering of chinese cabbage was conducted in order to investigate its dewatering behavior. Chopped cabbage was packed into cylinder and pressed by piston upto the predetermined pressure on Instron-1000. The rates of dewatering were affected domintantly by the applied pressure, but not significantly by the packed amount of cabbage in the cylinder. The pressure effect was increased very abruptly at first, but the increase rate was very low at high pressure greater than 20 MPa, showing great deviation from linear dependence of flow rate on pressure in Darcy's Law. Therefore, water expression from cabbage was not Newtonian flow of water through cell wall. In fact, the squeezed water contained a lot of solid particles, about 3% of solid cabbage particles, showing destruction of cell wall. It appeared that compression and dewatering of vegetable wastes in the low pressure. under 20 MPa, is more desirable for later treatment of the dewater. More researches are needed in order to develop a treatment method for the solid particles in the expressed water before an expeller treatment system can be applied to vegetable wastes.

  • PDF