• Title/Summary/Keyword: piston effect

Search Result 275, Processing Time 0.021 seconds

A Study for Generating Power on Operating Parameters of Powerpack utilizng Linear Engine (리니어엔진을 이용한 파워팩의 운전조건에 따른 발전출력에 관한 연구)

  • Oh, Yong-Il;Kim, Gang-Chul;Lim, Ock-Taeck
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.2
    • /
    • pp.183-190
    • /
    • 2012
  • The research shows the experiment results according to the combustion characteristics and configuration of the linear generator of powerpack for the generating power applying the 2-stroke compact linear engine. The powerpack used in this paper consists of 2-stroke linear engine, linear generator and air compressor parts. For identifying the combustion characteristics and generating power of linear engine, some parameters were varied sucha as electric load, fuel input calorie, spark timing delay and equivalence ratio. Also generating power was confirmed at each operation conditions, when the air gap length of linear generator part was changed as each 1.0 mm and 2.0 mm. During the all operations, intake air was inputted under the wide open throttle. Mass flow rate of air and fuel was changed using mass flow controller, after these were premixed by premixture device, and then premixed gas was supplied directly into each cylinder. As a result, piston frequency and combustion characteristics were different at each conditions according to parameters affecting the combustion such as fuel input calorie, resistive load, spark timing delay and equivalence ratio. Consequently, these had an effect on generating power.

Syringe Reuse Issues in Automated Contrast Injection System in Dynamic Magnetic Resonance Imaging (조영제 자동주입기를 활용한 자기공명영상 동적검사 시 실린지 재사용의 문제)

  • Son, Soon-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.445-450
    • /
    • 2019
  • This study proves that syringe reuse of automated injection system entails a risk of contrast media reflux and saline solution contamination which are pumped by a piston into the patients' venous cannula in the dynamic MR images, we will be aware of the serious problem. To quantify the contrast media contamination effect on the saline solution, identical volume of the saline solution was collected before and after the contrast injection to the patients' venous cannula following T1 weighted image scanning to verify whether signal intensities differences are observed. The signal intensity of saline solution after the contrast injection was significantly higher than that of saline before injection by 523.43%. This result is due to the backflow that contaminates the saline solution on the opposite side when the contrast agent is injected. In conclusion, the syringe used to inject contrast medium. causes cross-contamination due to contrast reflux. Therefore, even if the same patient's examination is used for quantitative analysis, the error should be avoided by changing the acquisition sequence or replacing the syringe.

Effect of Cu-Additions on the Hand-Over Layer of an Aluminum Alloy - Hardening for the Top Ring Groove of Automotive Piston by the Plasma Transferred Arc Welding Process -

  • Moon, J.H.;Seo, C.J.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.58-62
    • /
    • 2001
  • The surface of AC8A Ah alloy was modified by adding the Cu powder using a Plasma Transferred Arc (PTA) welding process. Under the optimum fabricating conditions, the modified surface of AC8A Ah alloy was observed to possess the sound microstructure with a minimum porosity. Hardness and wear resistance properties of the as-fabricated alloy were compared with those of the 76 heat-treated one. In case of the as-fabricated alloy, the hardness of the modified layer was twice that of the matrix region. Although significant increase in the hardness of the matrix region was observed after T6 heat treatment, the hardness of the modified layer was not observed to change. The wear resistance of the modified layer was significantly increased compared to that of the matrix region. The microstructure of a weld zone and the matrix region were investigated using the optical microscope, scanning electron microscope (SEM), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). The primary and eutectic silicon in the weld zone were finer and more curved than in the matrix region, while some precipitates has had been found therein. According to the TEM observation, the predominant precipitate present in the weld zone was the $\theta$'phase, which is precipitated during cooling by rapid solidification in PTA welding process. Improvement of hardness and wear properties in the weld zone in the as-fabricated condition can be explained based on the presence of $\theta$’precipitates and fine primary and eutectic silicon distribution.

  • PDF

Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment (AC8A 알루미늄합금 주조재의 열처리에 의한 특성 평가)

  • Lee, Syung Yul;Park, Dong Hyun;Won, Jong Pil;Kim, Yun Hae;Lee, Myung Hoon;Moon, Kyung Man;Jeong, Jae Hyun
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.280-285
    • /
    • 2012
  • Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold & hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at $190^{\circ}C$ for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at $190^{\circ}C$ for 16hrs.

The Optimum Design of Impact Absorbing System for Spreader in System Variations (스프레더용 충격흡수기의 시스템 변화에 따른 최적설계)

  • Hong, Do-Kwan;Kim, Dong-Young;Han, Dong-Seop;Ahn, Chan-Woo;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.311-316
    • /
    • 2002
  • On this study, to develop the impact absorbing system for spreader, we operated the dynamic response for models of three types consisting of spring and oil damper by the finite element analysis. Also, in the three types of impact absorbing system, we set the restricted stroke of piston to the static variables and the optimum design was operated to have the minimum value of the reaction force for the impact. As the result, the direct model of two degree of freedom system has lowest value, the model of one degree of freedom system has higher value than that and the parallel model of two degree of freedom system has the highest value. And we studied the effect that the change of spring constant and damping coefficient affect to the reaction force and as the result of the optimum design, we found that reaction force has the lowest value in the each of models.

Numerical Simulation of Swirl Effect on the Flow Fields and Spray Characteristics in Direct Injection Engine (적접분사 엔진의 유동장 및 분무특성에 미치는 선회비의 영향에 대한 수치해석적 연구)

  • Hong, K.B.;Kim, H.S.;Yang, H.C.;Ryou, H.S.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.120-129
    • /
    • 1995
  • Since the rate and completeness of combustion in direct injection engines were controlled by the characteristics of gas flow fields and sprays, an understanding of those was essential to the design of the direct injection engines. In this study the numerical simulations of swirl effects on the characteristics of gas flow fields and sprays were performed using the spray model that could predict the interactions between gas fields and spray droplets. The governing equations were discretized by the finite volume method and the modified k- e model which included the compressibility effects due to the compression/expansion of piston was used. The results of numerical calculation of the spray characteristics in the quiescent environment were compared with the experimental data. There were good agreements between the results of calculation and the experimental data, except in the early stages of spray. In the motoring condition, the results showed that a substantial air entrainment into the spray volume was emerged and hence the squish motion was relatively unimportant during fuel injection periods. As the swirl ratio increased, the evaporation rate was increased due to the wide dispersion of the spray droplets and the strong interaction between spray droplets and gas fields.

  • PDF

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

Stratigraphy of Late Quaternary Core Sediments and Comparative Study of the Tephra Layers from the Northwestern Ulleung Basin of the East Sea (울릉분지 북서부 해역의 코어퇴적물에 대한 제4기 후기 테프라 층서 및 테프라층 비교 연구)

  • 김일수;박명호;류병재
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.225-232
    • /
    • 2003
  • Three piston cores. obtained from the northwestern Ulleung Basin of the East Sea, are analyzed to study the tephrostratigraphy of the late Quaternary core sediments and to reveal the comparative characteristics of the tephra layers. The cores consist mainly of the muddy sediments that are partly interbedded with lapilli tephra and ash layers. The muds are further divided into hemipelagic and turbiditic mud facies. The hemipelagic facies is dominated by bioturbated mud and crudely laminated mud, whereas the turbiditic facies includes mainly thinly laminated mud and homogeneous mud, and often alternates with non-turbiditic muds. According to microscopic observation and EDX analysis, three tephra layers of the Ulleung-Oki (U-Oki; ca. 9.3 ka), Aira-Tanzawa (AT: ca. 22~24.7 ka) and Ulleung-Yamato (U-Ym; ca. 25~33 ka) are identified in the study cores. Among these, the U-Oki and U-Ym layers, originating from the Ulleung Island, consist mainly of massive-type glass shards with alkali feldspar. Both of the tephra layers contain a lower content of SiO$_2$ (57~66.5 wt.%) and a higher content of Na$_2$O+K$_2$O (11~16 wt.%) than the AT layer (SiO$_2$=75~78.5 wt.%, Na$_2$O+K$_2$O=6.5~9 wt.%) that consists of typical plane-type and/or bubble-wall glass grains. Compared with that of the U-Ym layer, a sedimentary facies of the U-Oki layer is very thick and contains three stratigraphic units, probably due to relatively large and different supplies of pyroclastic sediments. Thus, the eruption of Ulleung Volcano (ca. 7,300 B.C.) is thought to have had a more powerful effect on depositional environment than the U-Ym eruption.

Characteristics of $TiH_2$ under High Pressure (고압하에서 $TiH_2$의 특성화 연구)

  • Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.72-78
    • /
    • 1992
  • The Earth outer core accomodates moderately considerable amount of lighter elements than pure iron itself. Hydrogen is one of the possible candidates of minor constituents in the outer core. It would be worth while to extend for the pressure effect on the solubility of hydrogen in the metal-hydrides including iron hydride. In view of hydrogen being one of the potential substitutes for petroleum, searching a more efficient way for storing hydrogen in the form of hydrides is of considerable value. For two purposes, $TiH_2$was selected among lot of hydrides for its characteristics under pressure and temperature. There have been two kinds of experiment carried out on $TiH_2$ under different experimental conditions. As one of these attempts, polycrystalline $TiH_2$ was loaded up to 15 GPa stepwise at the constant temperature 500${\circ}$ using a piston-cylinder diamond anvil cell equipped with a miniature furnace of an electric power supply. The X-ra diffraction technique was employed on the quenched samples after the simultaneous high pressure and temperature treatments. During these high pressure-temperature runs, and irreversible phase of $TiH_2$ has been observed at the pressures higher than 11.3 GPa, which would be assigned to the orthorhombic crystal system as one of the new phase(s) of $TiH_2$. Molar volume change on this phase transition is ∼10%.

  • PDF

Rheological behavior study of Marine Lubricating oil on the amount of MGO (Marine Gas Oil) dilution (해상용 경유의 희석량에 따른 선박용 윤활유의 유변학적 거동연구)

  • Song, In Chul;Lee, Young Ho;Yeo, Young Hwa;Ahn, Su Hyun;Kim, Dae il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.240-245
    • /
    • 2016
  • This paper describes the rheological behavior study such as viscosity and change of shear stress regarding marine lubricating oil according to the amount of Marine Gas Oil (MGO) dilution. The viscosity reduction due to fuel dilution is crucially important characteristic to decreasing engine durability because of the abrasion of piston ring or liner. The lubricating oil used in this paper was blended with magnetic stirrer diluted High Sulfur Diesel (HSD, 0.05 wt%) ratio of 3 %, 6 %, 10 %, 15 % and 20 %. The viscosity and shear stress of diluted lubricating oil were measured with the temperature range from $-10^{\circ}C$ to $80^{\circ}C$ using a rotary viscometer (Brookfield Viscometer). As the amount of MGO dilution increasing in lubricating oil, the viscosity and stress of those decreased, because the lubricating oil diluted MGO with low viscosity show the trends to decreased viscosity and shear stress. Especially, the viscosity and shear stress of lubricating oil radically decreased at low temperature ($0{\sim}-10^{\circ}C$) and doesn't effect in MGO dilution at over $40^{\circ}C$. As temperature risen, the reduction of the viscosity and shear stress in lubricating oil shows the Newtonian behavior. The lubricating oil was required to check up periodically to improve engine durability since the viscosity reduction by MGO dilution accelerating the engine abrasion.