• Title/Summary/Keyword: pipkrake action

Search Result 2, Processing Time 0.016 seconds

Cross-sectional Changes of Ridge Traversing Trail in Jirisan National Park (지리산국립공원 종주등산로의 횡단면 변화 - 노고단~삼도봉 구간을 중심으로 -)

  • Kim, Taeho;Lee, Seungwook
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.2
    • /
    • pp.234-245
    • /
    • 2013
  • In order to examine the amount and rate of soil erosion on Ridge Traversing Trail in Jirisan National Park, a cross-sectional area of hiking trail were monitored at 16 sites in Nogodan - Samdobong section from November 2011 to April 2012. Although all sites demonstrates an enlarged cross-section of trail, the amount of soil erosion varies from site to site: 54.9 to $908.8cm^2$. It suggests that the erosional rate ranges from $0.1cm^2/day$ to $1.72cm^2/day$. The erosional amount is also varied with a trail type: $109.3cm^2$ for a shallow gully-like trail to $573.2cm^2$ for a unilateral trail. However, the cross-sectional change is larger on a sidewall than a tread irrespective of a trail type. The erosional amounts of November to April are smaller than that of May to October. In particular, the erosional amount of November 2011 to April 2012 is smaller than the depositional amount, implying a reduced cross-section of trail. Pipkrake action puts loose soil particles on a sidewall on March and April, and then rainwash due to a heavy rainfall takes them away after May. It seems to be the most predominant erosional process in Ridge Traversing Trail. A sidewall facing north shows a larger amount of erosion than a sidewall facing south. It also implies a difference in the development of a pipkrake according to an aspect. The small amount of erosion and cross-sectional decrease, which is usually observed on April, results from the combined effect of frost heaving, pipkrake action, a small rainfall and a temporary suspension of trampling. It is necessary to establish the monitoring system of trail erosion in terms of the management of hiking trail in a mountain national park.

  • PDF

Processes of Thufur Disintegration Mt. Halla (한라산 유상 구조토의 붕괴 프로세스와 요인)

  • Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.437-448
    • /
    • 2006
  • Bare-topped thufur is called as frost scars, implying the rupturing stage of vegetated mounds, Field observations and measurements provide empirical information on the process and factors of thufur disintegration in Mt. Halla, Initial bare patches on mound apexes are scaled up by continuous removal of soil and vegetation, resulting in the formation of crater-like thufur, Frost action plays a primary role in thufur disintegration, In particular, pipkrake loosens soil particles within the bare patches and subsequently accelerates the degradation of vegetated mounds during periods with frequent diurnal freeze-thaw cycle and high soil moisture, Deflation also has an impact on thufur breakup in that the bare patches usually lack upper dark brown soil and are covered with granules, Withered shrubs such as Juniperus chinensis var. sargentii are frequently observed in frost scars and disrupted mounds, indicating that thufur disintegration has been probably influenced by global warming.

  • PDF