• Title/Summary/Keyword: pinned-pinned

Search Result 206, Processing Time 0.022 seconds

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity

  • Luo, Kai;Pi, Yong-Lin;Gao, Wei;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.379-397
    • /
    • 2016
  • Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

Out-of-Plane Vibrations of Angled Pipes Conveying Fluid (내부유동을 포함한 굴곡된 파이프의 외평면 진동해석)

  • Pak, chol-Hui;Hong, Sung-Chul;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.306-315
    • /
    • 1991
  • This paper considered the out-of-plane motion of the piping system conveying fluid through the elbow connecting two straight pipes. The extended Hamilton's principle is used to derive equations of motion. It is found that dynamic instability does not exist for the clamped-clamped, clamped-pinned and pinned-pinned boundary conditions. The frequency equations for each boundary conditions are solved numerically to find the natural frequencies. The effects of fluid velocity and Coriolis force on the natural frequencies of piping system are investigated. It is shown that buckling-type instability may occur at certain critical velocities and fluid pressures. Equivalent critical velocity, which is defined as a function of flow velocity and fluid pressure, are calculated for various boundary conditions.

  • PDF

SOI Image Sensor Removed Sources of Dark Current with Pinned Photodiode on Handle Wafer (ICEIC'04)

  • Cho Y. S.;Lee C. W.;Choi S. Y.
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.482-485
    • /
    • 2004
  • We fabricated a hybrid bulk/fully depleted silicon on insulator (FDSOI) complementary metal oxide semiconductor (CMOS) active pixel image sensor. The active pixel is comprised of reset and source follower transistors on the SOI seed wafer, while the pinned photodiode and readout gate and floating diffusion are fabricated on the SOI handle wafer after the removal of the buried oxide. The source of dark current is eliminated by hybrid bulk/FDSOI pixel structure between localized oxidation of silicon (LOCOS) and photodiode(PD). By using the low noise hybrid pixel structure, dark currents qm be suppressed significantly. The pinned photodiode can also be optimized for quantum efficiency and reduce the noise of dark current. The spectral response of the pinned photodiode on the SOI handle wafer is very flat between 400 nm and 700 nm and the dark current that is higher than desired is about 10 nA/cm2 at a $V_{DD}$ of 2 V.

  • PDF

SOI CMOS image sensor with pinned photodiode on handle wafer (SOI 핸들 웨이퍼에 고정된 광다이오드를 가진 SOI CMOS 이미지 센서)

  • Cho, Yong-Soo;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.341-346
    • /
    • 2006
  • We have fabricated SOI CMOS active pixel image sensor with the pinned photodiode on handle wafer in order to reduce dark currents and improve spectral response. The structure of the active pixel image sensor is 4 transistors APS which consists of a reset and source follower transistor on seed wafer, and is comprised of the photodiode, transfer gate, and floating diffusion on handle wafer. The source of dark current caused by the interface traps located on the surface of a photodiode is able to be eliminated, as we apply the pinned photodiode. The source of dark currents between shallow trench isolation and the depletion region of a photodiode can be also eliminated by the planner process of the hybrid bulk/SOI structure. The photodiode could be optimized for better spectral response because the process of a photodiode on handle wafer is independent of that of transistors on seed wafer. The dark current was about 6 pA at 3.3 V of floating diffusion voltage in the case of transfer gate TX = 0 V and TX=3.3 V, respectively. The spectral response of the pinned photodiode was observed flat in the wavelength range from green to red.

Study on Buckling-Characteristics of Single-Layer Latticed Domes subject to Initial Imperfection (II) (Part II In the case of Pinned-Joint) (단층래티스돔의 좌굴특성에 미치는 형상초기부정에 관한 연구 (II) (제II보 핀접합의 경우))

  • 정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.74-78
    • /
    • 1993
  • Compared with rigid-jointed latticed dome, in pinned-joint latticed dome, results of Ref.1 showed reduction of buckling strength by decline of junction's rotational rigidity. Moreover, with decline of junction's rotational rigidity, geometrical initial imperfection incurs more and more reduction of buckling-strength. This study, subsequently the case of rigid-joint domes, is aimed at analyzing buckling-characteristics of pinned-joint single-layer latticed domes with triangular network subjected to initial imperfection.

  • PDF

Effect of frame connection rigidity on the behavior of infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.227-241
    • /
    • 2020
  • An experimental study has been carried out to investigate the effect of beam to column connection rigidity on the behavior of infilled steel frames. Five half scale, single-story and single-bay specimens, including four infilled frames, as well as, one bare frame, were tested under in-plane lateral cyclic reversal loading. The connections of beam to column for bare frame as well as two infill specimens were rigid, whereas those of others were pinned. For each frame type, two different infill panels were considered: (1) masonry infill, (2) masonry infill strengthened with shotcrete. The experimental results show that the infilled frames with pinned connections have less stiffness, strength and potential of energy dissipation compared to those with rigid connections. Furthermore, the validity of analytical methods proposed in the literature was examined by comparing the experimental data with analytical ones. It is shown that the analytical methods overestimate the stiffness of infilled frame with pinned connections; however, the strength estimation of both infilled frames with rigid and pinned connections is acceptable.

Analytical Pinning-Voltage Model of a Pinned Photodiode in a CMOS Active Pixel Sensor

  • Lee, Sung-Sik;Nathan, Arokia;Lee, Myung-Lae;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • An analytical pinning-voltage model of a pinned photodiode has been proposed and derived. The pinning-voltage is calculated using doping profiles based on shallow- and exponential-junction approximations. Therefore, the derived pinning-voltage model is analytically expressed in terms of the process parameters of the implantation. Good agreement between the proposed model and simulated results has been obtained. Consequently, the proposed model can be used to predict the pinning-voltage and related performance of a pinned photodiode in a CMOS active pixel sensor.

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.