• Title/Summary/Keyword: pin and disk type

Search Result 110, Processing Time 0.029 seconds

Wear Of Resin Composites Polymerized By Conventional Halogen Light Curing And Light Emitting Diodes Curing Units (HALOGEN LIGHT CURING UNIT 과 LIGHT EMITTING DIODES CURING UNIT 을 이용하여 중합되어진 복합레진의 마모 특성 비교)

  • 이권용;김환;박성호;정일영;전승범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1057-1060
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion with sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed the least wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as a curing unit for composite resin restorations.

  • PDF

An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Eine Grained 6061 Al Alloy Fabricated by ARB (누적압연접합에 의한 6061 Al 합금의 결정립 미세화와 마멸 특성 연구)

  • Lee T.O.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.147-150
    • /
    • 2001
  • The ARB (Accumulative Rolling Bonding) Process was applied to a 6061 Al alloy to obtain ultra-fine grains. After 4 ARB cycles at $315^{\circ}C$, original equilibrium large grains were transformed to ultra-fine grains of several hundred nano-meter size with nonequilibrium grain boundaries. At lower number of cycles, microsutcture of highly-tangled dislocation cells were observed. Large grains and coarsened precipitates filled the microstructure of specimens experienced ARB cycles more than 5. Sliding wear tests using a pin-on-disk type wear tester were conducted on the ARB processed 6061 Al alloy plate. Wear rates of the 6061 Al alloy increased with the increase of ARB cycle number as well as the applied load. Worn surfaces and debris, cross-sections of the worn specimen were examined with scanning electron microscopy (SEM) to investigate the wear mechanism of the ultra-fine grained 6061 Al Tensile properties of the 6061 Al alloy were also studied and used to correlate the wear test results with the microstructures, which evolved continuously with the number of ARB cycles.

  • PDF

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load (결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

Measurement of the Wear Amount of WC-coated Excavator Spacer using the PTA Process to Improve Wear Resistance by Using Reflective Digital Holography (반사형 디지털 홀로그래피를 이용한 내마모성 향상을 위한 공법이 적용된 PTA 굴착기의 초경 코팅 스페이서의 마모량 측정)

  • Shin, Ju-Yeop;Lim, Hyeong-Jong;Lee, Hang-Seo;Kim, Han-Sub;Jung, Hyun-Chul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • The spacer, which is located between the bucket and the arm of an excavator, has a role in preventing damage to the excavator arm during excavation work. When the durability of the spacer is increased, the lifetime of the arm can be extended and the processing costs can be reduced. To increase the durability of the spacer, tungsten carbide (WC) coating was applied on the surface of a spacer using the plasma transferred arc (PTA) process. The confirm the durability, a wear test using a pin-on disk type of wear testing machine was done under the given conditions and the wear amount on the surface of a tested specimen was measured using reflective digital holography. The results were compared with that of ALPHA-STEP.

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load (경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

AN IN-VITRO WEAR STUDY OF CEROMER AND HUMAN ENAMEL (Ceromer (Targis)에 의한 법랑질 마모에 관한 연구)

  • Kim, Jeong-Min;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.438-445
    • /
    • 2000
  • The ideal restorative material should mimic the properties of the tissues it replaces. Dental composite resins have been used widely as restorative materials due to its advantages such as excellent esthetics and ease of manipulation. But inadequate wear resistance has been a major factor limiting the use of composite restorative materials. Improved manufacturing techniques have allowed the development of hybrid composites, with a greater percentage volume filler loading, which have improved physical and mechanical properties. However they are lacking in the study of wear resistance. The purpose of this study was to evaluate the wear of human enamel against ceromer by the use of a pin-on-disk type wear testers. Discs of ceromer(Targis ; lvoclar Vivadent, Amherst. NY) and discs of type III gold alloy as a control were used f9r test specimens. Intact cusp of premolar and molar were used for enamel specimens. The wear of enamel was determined by weigh-ing the cusp before and after each test, and the weight converted to volumes by average densi-ty of enamel. Surface profilometer was used to quantify wear of the ceromer and gold specimens. Vicker's hardness tester was used to evaluate the surface hardness of test specimens. The SEM was used to evaluate the wear surfaces The results were as follows; 1. Ceromer produced less enamel wear than gold(p<0.05) 2. The wear volume of ceromer was greater than that of gold(p<0.01) 3. The hardess of ceromer was lower than that of gold, but there was no correlation between the hardness and wear of the ceromer and gold. 4. SEM analysis revealed that there were many voids and microcracks in the wear tract of ceromer In gold group, many minute V-shaped grooves were examined.

  • PDF

A Basic Study on Selection of Refrigeration Oils for R-134a Refrigerant (R-134a 냉매용 냉동기유 선정을 위한 기초 연구)

  • Na, B.C.;An, Y.J.;Han, D.C.;Chun, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.439-452
    • /
    • 1994
  • One of the chlorofluorocarbon compounds. R-12 deplete atmospheric ozone. It leads to international agreement to reduce CFC production. R-134a has similar thermodynamic properties to CFC-12. It has zero ODP(Ozone Depletion Potential). This Paper focuses on the lubricating oils for using with R-134a PAGs(Polyalkylene Glycol's) and esters are primary lubricants that are now being tested for use with R-134a Because of extreme polarity of R-134a. there are many problems in the selection of lubricating oil. This investigation analyzes compressor working conditions and calculates wear parts friction for simulation testing. Miscibility and material compatibility is proved by sealed glass tests. Friction was tested on the closed type pin on disk wear tester. This equipment simulates actual refrigerating compressor. Environment controlled test made more reliable result than field test Conventional oils(mineral oils, Alkylbenzene, PAO(Polyalpha Olefin) are immiscible with R-134a. PAGs and ester oils are miscible with R-134a. Friction coefficient is similar to conventional system(mineral oil/R-12 systems) at operating condition. At start & stop condition, PAGs/R-134a system has high friction coefficient. It provide reliable result on the lubricity, miscibility, material compatibility of R-134a with these new lubricants. It suggests proper selection of refrigeration oil that may improve compressor durability of performance.

  • PDF

A Study on Fretting-Wear Behavior of Inconel 690 due to Surrounding Temperature (주위 온도에 따른 Inconel690의 마멸 거동에 관한 연구)

  • 임민규;박동신;김대정;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.296-303
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air and water environment. Fretting tests were done under various vibrating amplitudes, applied normal loads and various temperatures. From the results of sliding and fretting wear tests, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. At room temperature, the wear coefficient K of Inconel 690 is 7.57${\times}$10$\^$13/Pa$\^$1/ in air and it is 1.93${\times}$10$\^$13/Pa$\^$1/ in water. At room temperature, it is found that the wear volume in air is more than in water. In water, the wear coefficient K at 50$^{\circ}C$ and 80$^{\circ}C$ is 4.35${\times}$10$\^$-13/Pa$^1$ and 5.81${\times}$10$\^$-13/Pa$^1$ respectively, Therefore, it is found that the wear volume extremely increases by increasing on temperature in water. This study shows that the dissolved oxygen with temperature increment increases and the wear due to fluidity is severe.

  • PDF

Study on Tribological Characteristics of Machine Component in Boundary Lubrication (경계윤활에서 기계 부품 소재의 트라이볼로지적 특성에 관한 연구)

  • Kim, Myeong-Gu;Seo, Kuk-Jin;Nam, Jahyun;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.356-361
    • /
    • 2019
  • The friction and wear between machine components directly influence the energy loss and failure in various machines. Therefore, there is always a demand for finding methods to reduce friction and wear. Of the possible methods, lubrication is a widely used method for reducing friction and wear. In the case of lubrication, it is important to analyze the tribological behavior in the boundary lubrication because most of friction and wear occurs in the boundary lubrication regime. Cast iron has been regarded as a good material for industrial applications due to the excellent mechanical properties and high productivity. Especially, nodular cast iron is a material that shows better mechanical properties and wear-resistance compared with cast iron due to inclusion of spheroidal graphite. In this work, we investigated the tribological characteristics of nodular cast iron with respect to different counter parts in boundary lubrication regime. Sliding tests were conducted with SUJ2, ZrO2, Si3N4 balls as counter parts using a pin-on-disk type tribotester. The results showed different friction and wear behaviors with different counter parts. The case of ZrO2 showed the lowest wear rate in specimen and no significant ball wear. In case of SUJ2, it showed similar wear rate with ZrO2 case in specimen and the highest friction coefficient. The case of Si3N4 showed the lowest friction coefficient, 33% lower than the case of SUJ2. It showed 16.9 times larger wear rate in specimen and 43% larger wear rate in ball compared to that of the SUJ2 case.

Effect of Kinematic Motion on Changes in Coefficients of Friction of Porcine Knee Joint Cartilage (기구학적 운동이 돼지 무릎 관절연골의 마찰계수 변화에 미치는 영향)

  • Kim, Hwan;Kim, ChoongYeon;Lee, KwonYong;Kim, DaeJoon;Kim, DoHyung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • In this study, the frictional behaviors of articular cartilage against a Co-Cr alloy in two types of kinematic motions were compared. Cartilage pins were punched from the femoral condyles of porcine knee joints, and Co-Cr alloy disks were machined from orthopedic-grade rods and polished to a surface roughness ($R_a$) of 0.002. Friction tests were conducted by using a pin-on-disk-type tribotester in phosphate buffered saline (PBS) under pressures of 0.5, 1, and 2 MPa. All tests were performed in the repeat pass rotational (ROT) and the linear reciprocal (RCP) sliding motions with the same sliding distance and speed of 50 mm/s. The coefficients of friction of the cartilage against the Co-Cr alloy increased with the sliding time in both kinematic motions for all contact pressures. The maximum coefficients of friction in RCP motion were 1.08, 2.82, and 1.96 times those in ROT motion for contact pressures of 0.5, 1, and 2 MPa, respectively. As the contact pressure increased, the coefficients of friction gradually increased in RCP motion, whereas they decrease and then increased in ROT motion. The interaction between the directional change of the shear stress and the orientation of collagen fiber in the superficial layer of the cartilage could affect the change in the frictional behaviors of the cartilage. A large difference in the coefficients of friction between the two kinematic motions could be interpreted as differences in the directional change of shear stress at the contact surface.