• Title/Summary/Keyword: piles

Search Result 1,381, Processing Time 0.032 seconds

Static pile load test and load trasfer measurement for large diameter piles. (대구경 말뚝정재하시험 및 하중전이 측정사례)

  • 최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.107-141
    • /
    • 2000
  • Large diameter piles can be defined as piles with diameter of at least 0.76 m (2.5 ft). In bridge foundation, large diameter piles have been used as pier foundations and their use has been increased greatly. In this study, static pile load tests for large diameter piles peformed in Kwangan Grande Bridge construction site were introduced. Also, various sensor installation methods for several types of piles (that is, open-ended steel pipe pile, drilled shafts and socketed pipe piles), pipe axial load measuring method, load transfer analysis method and pile load test results (pile-head load - settlement curve, and pile axial load distribution curve along the pile depth) were introduced.

  • PDF

Reinforcement Effect of Stabilizing Piles in Large-scale Cut Slops (대절토사면에 보강된 억지말뚝의 활동억지효과에 관한 연구)

  • 홍원표;한중근;송영석;신도순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.65-81
    • /
    • 2003
  • During the last few decades in Korea, the development of hillside or mountain areas has rapidly increased for infrastructure construction such as railroads, highways and housing. Many landslides have occurred during these constructions. Also, the amount and scale of damage caused by landslides have increased every year. In the case of Far East Asia including Korea, the damage of landslides is consequently reported during the wet season. In this paper, the effect of stabilizing piles on slope stability is checked and the behavior of slope soil and piles are observed throughout the year by field measurements in the large-scale cut slopes. In particular a large-scale cut slope situated on the construction site for the express highway in Donghae, Korea. First of all, The behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil gradually increased and rapidly decreased at depth of sliding surface indicating that the depth of sliding surface below the ground surface can be predicted. On the basis of being able to predict the depth of the sliding surface, stabilizing piles were designed and constructed in this slope. To ensure the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. The maximum deflection of piles is measured at the pile head and it is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

  • PDF

An Experimental Study on the Behavior of Open-ended Pipe Piles Ggroup to the Simulated Seaquake (해진시 개단무리말뚝의 거동에 관한 모형실험 연구)

  • 남문석;최용규;김재현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.447-454
    • /
    • 1999
  • The compressive capacity and the soil plugging resistance of single open-ended pipe pile were completely decreased in the previous study on the behavior of shorter single pile during simulated seaquake induced by the vertical component of earthquake. But the capacity of single open-ended pipe pile with greater penetration and the capacity of piles group with shorter penetration were expected to be stable after seaquake motion. In this study, first, 2-piles or 4-piles are driven into the calibration chamber included in saturated fine medium sand with several simulated penetrations, and the compressive load test for each piles group was performed. Then, about 95 % compressive load of the ultimate capacity was applied on the pile head during the simulated seaquake motion. Finally, In confirm the reduction of pile capacity during the simulated seaquake motion, the compressive load test for each single pile or piles group after seaquake motion was performed. During the simulated seaquake, the compressive capacity of open-ended pipe piles with greater penetration ( 〉about 27 m) was not degraded even in deep sea deeper than 220 m and soil plug within open-ended pipe pile installed in deep sea was stable after seaquake motion. Also, in the case of 2-piles or 4-pile groups, the compressive capacity after seaquake motion was not degraded at all regardless of pile penetration depth beneath seabed, sea water depth and seaquake frequency.

  • PDF

Strength Characteristics of Hollow Prestressed Concrete Filled Steel Tube Piles for Hybrid Composite Piles (복합말뚝용 중공형 콘크리트 충전 강관말뚝의 강도 특성)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • Hollow prestressed concrete filled steel tube (HCFT) piles, which compose hollow PHC piles inside thin wall steel tubes, are developed. In order to investigate the strength characteristics of HCFT piles, flexural and shear tests were conducted on HCFT piles as well as PHC and steel pipe piles with the same diameter. Results of the test program showed that the flexural strength of HCFT piles was 2.88 and 1.19 times those of ICP and steel pipe piles with thickness of 12 mm, respectively, and its shear strength was 2.40 times that of steel pipe piles. The shear key attached to the inside of thin wall steel tube did not affect the flexural behavior of HCFT piles. It was also observed that the flexural strengths of HCFT piles with diameters of 450 and 500 mm were 35 to 63% higher than the sum of the flexural strengths of its components, respectively, because the strength of concrete in compressive zone increased by confining effect of thin wall steel tube on concrete. HCFT piles used as upper piles in hybrid composite piles might decrease the lateral displacement and increase the structural safety of structures subjected to lateral loads.

Physical test study on double-row long-short composite anti-sliding piles

  • Shen, Yongjiang;Wu, Zhijun;Xiang, Zhengliang;Yang, Ming
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.621-640
    • /
    • 2017
  • The double-row long-short composite anti-sliding piles system is an effective way to control the landslides with high thrust. In this study, The double-row long-short composite anti-sliding piles with different load segment length (cantilever length) and different pile row spacing were studied by a series of physical tests, by which the influences of load segment length of rear-row piles as well as pile row spacing on the mechanical response of double-row long-short composite anti-sliding pile system were investigated. Based on the earth pressures in front of and behind the piles obtained during tests, then the maximum bending moments of the fore-row and the rear-row piles were calculated. By ensuring a equal maximum moments in the fore-row and the rear-row piles, the optimum lengths of the rear-row piles of double-row long-short composite system under different piles spacing were proposed. To investigate the validity of the reduced scale tests, the full-scale numerical models of the landside were finally conducted. By the comparisons between the numerical and the physical test results, it could be seen that the reduced scale tests conducted in this study are reliable. The results showed that the double-row long-short composite anti-sliding piles system is effective in the distribution of the landslide thrust to the rear-row and the fore-row piles.

The Use of Piles to Cut Slopes Design in Cohesive Soils (억지말뚝을 이용한 점성토지반 절토사면의 설계)

  • 홍원표;한중근;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.157-170
    • /
    • 1999
  • A new design technique is presented to stabilize cut slopes in cohesive soils by use of piles. The design method can consider systematically factors such as the gradient and height of slope, the number and position of pile's rows, the interval and stiffness of piles, etc. The design method is established on the basis of the stability analysis of slope with rows of piles. The basic concept applied in the stability analysis is that the soil across the open space between piles can be retained by the arching action of the soil, when a row of piles is installed in soil undergoing lateral movement such as landslides. To obtain the whole stability of slope containing piles, two kinds of analyses for the pile-stability and the slope- stability must be performed simultaneously. An instrumentation system has been installed at a cut slope in cohesive soil, which has been designed according to the presented design process. The behavior of both the piles and the soil across the open space between piles is observed precisely. The result of instrumentation shows that the cut slope has been stabilized by the contribution of stabilizing effect of piles on the slope stability in cohesive soil.

  • PDF

Characteristics of Skin Friction on Compression Loaded Group Piles (압축하중을 받는 무리말뚝의 주면지지력 특성)

  • Ahn Byung-Chul;Lee Jun-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.95-100
    • /
    • 2004
  • H-pile can be more easily driven than pipe pile by pile driver and shows high skin friction and plugging effect. And lately It is well grown that the high strength H-pile has been widely used f3r pile foundations. To compare the skin frictions of H piles under different density soil conditions, this paper presents results of a series of model tests on vertically loaded group piles. Model piles made of steel embedded in weathered granite soil were used in this study. Pile arrangements $(2\times2,\;3\tunes3)$, pile space(2D, 4D, 6D), and soil density$(D_r=40\%,\;80\%)$ were tested. The main results obtained from the model tests can be summarized as follows. The series of tests found that compression load for group piles increases as number of piles increase and piles space ratic decrease to $D_r=40\%$ of soil density. The analysis also found that the theoretical value of skin friction for group piles is greater than practical value as piles space ratio increases to $D_r=40\%$ of soil density. Piles showed the greatest difference of the skin friction in case that the pile space ratio(S/D) is 6. The theoretical value by Meyerhof and DM-7 showed 1.83 times and 1.32 times respectively as great as practical value in case of S/D=6 and $2\times2$.

Behavior of piled rafts overlying a tunnel in sandy soil

  • Al-Omari, Raid R.;Al-Azzawi, Adel A.;AlAbbas, Kadhim A.
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.599-615
    • /
    • 2016
  • The present research presents experimental and finite element studies to investigate the behavior of piled raft-tunnel system in a sandy soil. In the experimental work, a small scale model was tested in a sand box with load applied vertically to the raft through a hydraulic jack. Five configurations of piles were tested in the laboratory. The effects of pile length (L), number of piles in the group and the clearance distance between pile tip and top of tunnel surface (H) on the load carrying capacity of the piled raft-tunnel system are investigated. The load sharing percent between piles and rafts are included in the load-settlement presentation. The experimental work on piled raft-tunnel system yielded that all piles in the group carry the same fraction of load. The load carrying capacity of the piled raft-tunnel model was increased with increasing (L) for variable (H) distances and decreased with increasing (H) for constant pile lengths. The total load carrying capacity of the piled raft-tunnel model decreases with decreasing number of piles in the group. The total load carrying capacity of the piles relative to the total applied load (piles share) increases with increasing (L) and the number of piles in the group. The increase in (L/H) ratio for variable (H) distance and number of piles leads to an increase in piles share. ANSYS finite element program is used to model and analyze the piled raft-tunnel system. A three dimensional analysis with elastoplastic soil model is carried out. The obtained results revealed that the finite element method and the experimental modeling are rationally agreed.

The Behavior of a Cut Slope Stabilized by Use of Piles (억지말뚝으로 보강된 절개사면의 거동)

  • Hong, Won-Pyo;Han, Jung-Geun;Lee, Mun-Gu
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.111-124
    • /
    • 1995
  • On development of mountaneous or hilly area, stability of cut slope should be provided to prevent undesirable landslides. When piles are used as a countermeasure to stabilize existing landslide, stabilities for both piles and slope should be simultaneously satisfied to obtain the whole stability of the slope reinforced by piles. In order to confirm the effect of stabilizing piles on slope stabilization, it is necessary to investigate the behavior of the slope, in which the piles are installed. In this paper, first, the countermeasures used commonly to control unstable slope in Korea were summerized systematically. Nezt, the behavior of piles and slope soil was investigated by instrumentation installed into a cut slope for an apartment stabilized by a row of piles. Instrumentation could present sufficient effect of piles on slope stabilization Construction works in front of the row of piles affected the displacement of piles and slope. The construction works were divided into four stages, i.e. initial cutting stage of slope, excavation stages for retaining wall and parking space, and construction of retaining wall. As the result of research, the applicability of the proposed design method could be confirmed sufficiently.

  • PDF

Approximate seismic displacement capacity of piles in marine oil terminals

  • Goel, Rakesh K.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.129-146
    • /
    • 2010
  • This paper proposes an approximate procedure to estimate seismic displacement capacity - defined as yield displacement times the displacement ductility - of piles in marine oil terminals. It is shown that the displacement ductility of piles is relatively insensitive to most of the pile parameters within ranges typically applicable to most piles in marine oil terminals. Based on parametric studies, lower bound values of the displacement ductility of two types of piles commonly used in marine oil terminals - reinforced-concrete and hollow-steel - with either pin connection or full-moment-connection to the deck for two seismic design levels - Level 1 or Level 2 - and for two locations of the hinging in the pile - near the deck or below the ground - are proposed. The lower bound values of the displacement ductility are determined such that the material strain limits specified in the Marine Oil Terminal Engineering and Maintenance Standard (MOTEMS) are satisfied at each design level. The simplified procedure presented in this paper is intended to be used for preliminary design of piles or as a check on the results from the detailed nonlinear static pushover analysis procedure, with material strain control, specified in the MOTEMS.