• Title/Summary/Keyword: piled raft

Search Result 93, Processing Time 0.017 seconds

A Comparative Study of Structural Analysis on DCM Improved by Pile and Block Type (말뚝식과 블록식이 혼합된 시멘트혼합처리공법(DCM)의 구조체 해석 비교 연구)

  • Shin, Hyun Young;Kim, Byung Il;Kim, Kyoung O;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.5-19
    • /
    • 2014
  • In this study, the structural analysis is performed on the method of shallow block and deep cement mixing pile, and then their characteristics and associated behaviors were analyzed. In the case of continuous beam analysis, the predicted settlement was very small, and shear force and bending stress are somewhat overestimated. The frame method is similar to numerical analysis in the internal force shallow block and long pile, but because the settlement of pile is underestimated, the additional calculation using the reaction of the long pile is necessary. For soil arching method and piled raft foundation method, the excessive axial force of long pile was predicted because the load sharing of pile is very large compared to the other methods. In the behavior of the shallow block and deep pile method, the settlement of shallow block and contact pressure are much in the center than the edge. In the estimating method considering the interaction between improved material and ground, the load sharing of the soil-cement pile ranges from 20% to 45%, and the stress ratio is 2.0~5.0 less than piled DCM. The maximum member forces at the boundary conditions of pile head are similar, but in fixed head the axial force and vertical displacement are different in accordance with pile arrangement.

Estimation of the Axial Stiffness of Reinforcing Piles in Vertical Extension Structures (수직증축 공동주택 하부 신설 보강말뚝의 축강성 산정)

  • Kim, Do-Hyun;Jeong, Sang-Seom;Cho, Hyun-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.35-44
    • /
    • 2019
  • In this study, the axial stiffness of reinforcing piles (Kvr) for the vertical extension remodeling structures was estimated through 3D finite element analysis. In the computation of the minimum required axial stiffness of reinforcing piles, proposed maximum axial stiffness of old and deteriorated existing piles (Kve) based on theoretical and experimental approaches will be applied. Through this, the required increase rate of axial stiffness of reinforcing piles in order to support the increased structural loading was proposed for end-bearing and friction piles by different slenderness ratio (L/D). The numerical model was validated by comparing the computed results with actual field measurements. Based on the computed results, it was concluded that the end-bearing reinforcing pile needs 44% - 67% increase in axial stiffness to deal with the deterioration of existing piles and support the additional structural load due to vertical extension remodeling.

Proposed Deterioration-induced Axial Stiffness of Existing Piles in Vertical Extension Structures (수직증축 공동주택 하부 기존말뚝의 열화를 고려한 축강성 제안)

  • Jeong, Sang-Seom;Kim, Do-Hyun;Cho, Hyun-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.25-33
    • /
    • 2019
  • In this study, the axial stiffness of existing piles (Kve) of vertical extension remodeled building was quantified through theoretical and experimental approaches. Theoretically induced upper and lower boundary of the pile axial stiffness was estimated by using the formula proposed by Randolph and Wroth (1978), which can estimate the axial stiffness of rigid and flexible pile subjected under soil confinement. In addition, 38 cases of field measurement data on deteriorated piles with various diameters constructed in the period between 1995 - 1997 were taken in to account by overlapping the field data with the theoretical boundary of the axial stiffness. Through this the maximum axial stiffness of existing pile due to deterioration and long service time was presented for various slenderness ratio (L/D), which can be used in estimating the necessary axial stiffness of reinforcing piles(Kvr) for the vertical extension remodeling. The lower 95% value of the estimated axial stiffness of existing pile will be induced through statistical processing.