• Title/Summary/Keyword: pile shear

Search Result 313, Processing Time 0.03 seconds

Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : II. Bearing Capacity Prediction (중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : II. 이론식과 토크에 의한 지지력 예측 비교)

  • Lee, Jongwon;Lee, Dongseop;Na, Kyunguk;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • Various prediction methods for the bearing capacity of helical piles have been introduced with consideration of both the steel shaft and the helix plates attached to the shaft. In this paper, three representative methods, that is, individual bearing method, cylindrical shear method, and torque correlation method are discussed and compared to each other. The prediction methods were verified by comparing with a series of loading test results performed on moderate-size helical piles from the companion paper. As a result, the measured bearing capacity is greater than the bearing capacity predicted by the cylindrical shear method, but smaller than that of the individual bearing method. In addition, the bearing capacity predicted by the torque correlation method is in good agreement with the measured bearing capacity.

DESIGN AND CONSTRUCTION OF STRUTTED AND ANCHORED SHEET PILE WALLS IN SOFT CLAY

  • Broms, Bengt-B
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.1-59
    • /
    • 1994
  • The design and construction of strutted and anchored sheet pile walls in soft clay are reviewed based on experience gained mainly in Singapore during the last 10years where mainly strutted sheet pile walls diaphragm walls, and contiguous bored piles are used. It is important to consider in the design the high lateral earth pressures acting on the sheet piles below the bottom of the excavation when the depth of the excavation is large compared with the shear strength of the clay. The strut loads and the maximum bending moment in the sheet piles can in that case be much higher than indicated by a conventional analysis. Different methods to increase the stability have been investigated. With jet grouting, embankment piles and excavation under water it is possible to reduce significantly the maximum bending moment, the strut loads, and the settlements outside the excavated area as well as the heave within the excavation.

  • PDF

Experimental study of a modeled building frame supported by pile groups embedded in cohesionless soil

  • Ravi Kumar Reddy, C.;Gunneswara Rao, T.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.321-336
    • /
    • 2011
  • This paper presents the results of static vertical load tests carried out on a model building frame supported by pile groups embedded in cohesionless soil (sand). The effect of soil interaction on displacements and rotation at the column base and also the shears and bending moments in the columns of the building frame were investigated. The experimental results have been compared with those obtained from the finite element analysis and conventional method of analysis. Soil nonlinearity in the lateral direction is characterized by the p-y curves and in the axial direction by nonlinear vertical springs along the length of the piles (${\tau}-z$ curves) at their tips (Q-z curves). The results reveal that the conventional method gives the shear force in the column by about 40-60%, the bending moment at the column top about 20-30% and at the column base about 75-100% more than those from the experimental results. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

Multivariate adaptive regression spline applied to friction capacity of driven piles in clay

  • Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.285-290
    • /
    • 2011
  • This article employs Multivariate Adaptive Regression Spline (MARS) for determination of friction capacity of driven piles in clay. MARS is non-parametric adaptive regression procedure. Pile length, pile diameter, effective vertical stress, and undrained shear strength are considered as input of MARS and the output of MARS is friction capacity. The developed MARS gives an equation for determination of $f_s$ of driven piles in clay. The results of the developed MARS have been compared with the Artificial Neural Network. This study shows that the developed MARS is a robust model for prediction of $f_s$ of driven piles in clay.

Study on the Joint Detail between PHC pile and Structural Foundation (PHC말뚝과 기초판 접합부 상세에 관한 연구)

  • Chun, Young-Soo;Park, Jong-Bae;Sim, Young-Jong;Kang, In-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.29-30
    • /
    • 2009
  • In this study, analyzing loads transferred to the piles, both easily constructed and mechanically improved pile head design method for the PHC pile is presented. To compare with mechanical capacity of the existing and proposed method, tensile, compression, moment, and shear tests are performed with 11 pieces of full-scaled blocks. As a result, mechanical capacities of the proposed method is superior to those of existing one in all aspects and work efficiency as well.

  • PDF

A Numerical Analysis of Excavation Method Using Partially Reinforced Soldier Pile (부분보강 엄지말뚝을 이용한 굴착시공방법의 수치해석적 타당성검토)

  • 김준석;김주용;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.5-12
    • /
    • 2000
  • The hazard of excavation may be very high until a supporting system is completely installed. In this paper, an excavation method which uses partially reinforced soldier pile($\square$-shape) inserted by a short length steel bar was proposed and simulated by the finite element method. The reinforcing steel bar is moved down along the stage of excavation to reinforce the stiffness of the supporting system. The result of analysis showed that the risk of failure by bending moment or shear stress could be significantly reduced by the reinforcing effect of the steel bar. The proposed method could be applied to the strut-supporting wall or the diaphragm wall.

  • PDF

A Study on Estimation of Bearing Capacity of Sand Compaction Pile by Centrifuge Model Tests (원심모형실험에 의한 모래다짐말뚝의 지지력 산정식 연구)

  • Yoo, Nam-Jae;Hong, Young-KiI;Jun, Sang-Hyun;Kim, Kyung-Soo
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.121-130
    • /
    • 2007
  • Centrifuge model tests were performed to find appropriate equations proposed previously of estimating the bearing capacity of the composite clayey soil reinforced with sand compaction pile. Model tests were carried out with changing the replacement ratio of SCP (20%, 40%, 70%), contents of fine materials (5%, 10%, 15%) and ratio of treated width to loading width (1B, 2B, 3B). Test results about bearing capacity of the composite ground were obtained by performing the surcharge load tests with measurements of applied loads and vertical displacement. Bearing capacities against bulging and shear failures were estimated by the existing equations. As results of comparing the estimated bearing capacity with experimental values the bearing capacities estimated by Greenwood's equation (1970) for bulging failure mode were similar to the test results.

  • PDF

An Experimental Study on the MSG Reinforcement of Steel Pipe Pile Installed by PRD (MSG공법에 의한 PRD강관말뚝 보강에 관한 사례 연구)

  • Chun, Byungsik;Kang, Heejin;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.5-12
    • /
    • 2007
  • Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The sliding of cut slope frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. The study in this paper shows that mudstone having enough strength in a boring stage has lost the strength after installing PRD (percussion rotary drill) steel pipe pile inducing an insufficient bearing capacity. Field test has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, confirmed by the static load test.

  • PDF

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.

Development and Structural Assessment of Joints of Permanent Uni-Wall System and Floor Systems in Substructure

  • Chun, Sung-Chul;Kim, Seung-Hun;Noh, Sam-Young;Kim, Kap-Soo;Han, Byum-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.230-242
    • /
    • 2012
  • Recently the Permanent Uni-wall System (PUS) has been developed which improved the disadvantage of the Cast-In-Place Concrete Pile (CIP) and could be used as permanent retaining wall. In this study, joints between PUS and floor systems were developed. From analyses of the characteristics of design and construction of PUS, shear friction reinforcements with couplers were adopted for shear design of the joints. Twelve types of joints were developed which were classified according to the types of floor structures, wale, and piles of PUS. Two typical joints were tested and the joints showed satisfactory behaviors on the points of shear strength, stiffness, and serviceability. Especially the shear strengths were much higher than the design strengths due to the shear keys which were by-products in splicing shear reinforcements. However, the shear strength of the joint is recommended to be designed by only shear friction reinforcement because shear key is not reliable and too brittle.