• Title/Summary/Keyword: pile locations

Search Result 52, Processing Time 0.022 seconds

Analysis of Axial Capacity and Constructability of Helical Pile with Inner Cone Penetration (내부 콘 항타를 적용한 헬리컬 파일의 지지력 및 시공성 분석)

  • Lee, Jun-Ho;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, 1/6 small-scale model tests of helical piles were conducted to evaluate their installation time and ultimate capacities. Model sand layers were constructed using sand pluviating method to produce uniform soil relative density. For installation of different helical piles varying locations (vertical center-to-center spacings of 50 mm and 150 mm) of helix plates, two different rotation speeds of 15 rpm and 30 rpm were implemented. Cone penetration equipment was installed within the hallow section of the helical pile to increase ultimate capacity of helical pile and to evaluate soil properties of plugged soils and soils below pile tip after installation of the piles. Based on the test results, the most fasted installation was possible under the condition of "rotation speed of 30 rpm and center-to-center spacing of 50 mm", and the highest ultimate capacity was mobilized under the condition of "rotation speed of 30 rpm and center-to-center spacing of 150 mm with cone penetration implementation."

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.

Modified p-y curves to characterize the lateral behavior of helical piles

  • Hyeong-Joo, Kim;James Vincent, Reyes;Peter Rey, Dinoy;Tae-Woong, Park;Hyeong-Soo, Kim;Jun-Young, Kim
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.505-518
    • /
    • 2022
  • This study introduces soil resistance multipliers at locations encompassed by the zone of influence of the helix plate to consider the added lateral resistance provided to the helical pile. The zone of influence of a helix plate is a function of its diameter and serves as a boundary condition for the modified soil resistance springs. The concept is based on implementing p-multipliers as a reduction factor for piles in group action. The application of modified p-y springs in the analysis of helical piles allows for better characterization and understanding of the lateral behavior of helical piles, which will help further the development of design methods. To execute the proposed method, a finite difference program, HPCap (Helical Pile Capacity), was developed by the authors using Matlab. The program computes the deflection, shear force, bending moment, and soil resistance of the helical pile and allows the user to freely input the value of the zone of influence and Ω (a coefficient that affects the value of the p-multiplier). Results from ten full-scale lateral load tests on helical piles embedded at depths of 3.0 m with varying shaft diameters, shaft thicknesses, and helix configurations were analyzed to determine the zone of influence and the magnitude of the p-multipliers. The analysis determined that the value of the p-multipliers is influenced by the ratio between the pile embedment length and the shaft diameter (Dp), the effective helix diameter (Dh-Dp), and the zone of influence. Furthermore, the zone of influence is recommended to be 1.75 times the helix diameter (Dh). Using the numerical analysis method presented in this study, the predicted deflections of the various helical pile cases showed good agreement with the observed field test results.

Approximate seismic displacement capacity of piles in marine oil terminals

  • Goel, Rakesh K.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.129-146
    • /
    • 2010
  • This paper proposes an approximate procedure to estimate seismic displacement capacity - defined as yield displacement times the displacement ductility - of piles in marine oil terminals. It is shown that the displacement ductility of piles is relatively insensitive to most of the pile parameters within ranges typically applicable to most piles in marine oil terminals. Based on parametric studies, lower bound values of the displacement ductility of two types of piles commonly used in marine oil terminals - reinforced-concrete and hollow-steel - with either pin connection or full-moment-connection to the deck for two seismic design levels - Level 1 or Level 2 - and for two locations of the hinging in the pile - near the deck or below the ground - are proposed. The lower bound values of the displacement ductility are determined such that the material strain limits specified in the Marine Oil Terminal Engineering and Maintenance Standard (MOTEMS) are satisfied at each design level. The simplified procedure presented in this paper is intended to be used for preliminary design of piles or as a check on the results from the detailed nonlinear static pushover analysis procedure, with material strain control, specified in the MOTEMS.

Reinforcement Effectiveness and Arching Effect of Geogrid-Reinforced and Pile-Supported Roadway Embankment (지오그리드로 보강된 성토지지말뚝의 보강 및 아칭효과분석)

  • Shin, Eun Chul;Oh, Young In;Lee, Dong Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • A pilot scale filed model test and 2-D numerical analysis was conducted to evaluate the effectiveness of constructing a geogrid-reinforced and pile-supported embankment system over soft ground to reduce differential settlement, and the results are presented hearin. Three-by-three pile groups with varying the space between pile were driven into a layer of soft marine clay and a layer of geogrid was used as reinforcement over each pile group. 2-D numerical analysis has been conducted by using the FLAC-2D(Fast Lagrangian Analysis of Continua) program for same condition of field model test. The settlement, vertical stress, and strain of geogrid due to the construction of embankment were measured at various locations. Based on the field model test and numerical analysis results, pile reinforcement generated the soil arching at the midspan of pile cap and the geogrid reinforcement helps reduce the differential settlement of the soft ground by tensile strength of geogrid. Also for $D/b{\geq}6.0$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.

  • PDF

Detecting Steel Pile Using Bore-hole 3-components Fluxgate Magnetometer (강관말뚝 탐지를 위한 시추공 3성분 자기탐사)

  • Lee, Heui-Soon;Rim, Hyoung-Rea;Jung, Ho-Joon;Jung, Hyen-Key;Yang, Jun-Mo
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.673-680
    • /
    • 2010
  • A steel pile often utilized to bear heavy loads of the upper sub-structure, e. g., bridge constructions and tall buildings. As the steel piles are driven in the underground, it is not easy to detect the depth of the existing pile foundation when there is no detailed foundation information available. However, accurate informations of the depths of piles becomes critical required when reinforcing the existing structures or constructing new ones at the adjacent stage to assure the safety of existing structures. In this study, we tested the applicability of the three components borehole fluxgate magnetometer for detecting the depths and locations of steel piles which are commonly used in civil engineering. Results showed that the information of location as well as the depth of steel piles could be obtained by using data from the three components borehole fluxgate magnetometer.

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

Assessment of Levee Safety Using Electrical Surveys (하천제방의 안전성 평가를 위한 전기비저항탐사)

  • Yoon, Jong-Ryeol;Kim, Jin-Man;Choi, Bong-Hyuck
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.53-61
    • /
    • 2005
  • 2-D and 3-D resistivity surveys were carried out at the Deok-In2 levee during the period of arid and rainy seasons to assess the waterproof effectiveness of sheet pile and routing sections and detect the location of pipings. Inverted resistivity sections clearly indicated the boundaries of sheet pile and grouting sections and the locations of pipings observed at the ground surface. It is necessary that proper survey parameters are determined considering inverted depth and resolution and contacting resistance is decreased to obtain favorable result.

  • PDF

Laboratory Experiments for Evaluating Necking Defects in Bored Piles Embedded in Sandy Soils Using Electromagnetic Waves (전자기파를 이용한 모래 지반에 설치된 현장타설말뚝의 네킹 결함 평가를 위한 실내 모형실험)

  • Lee, Jong-Sub;Kim, Youngdae;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.5
    • /
    • pp.25-34
    • /
    • 2020
  • Studies on nondestructive evaluation methods using electromagnetic waves have been commonly conducted to evaluate necking defects in bored piles. However, the propagation of electromagnetic waves are affected by water contents of surrounding materials. This study aims to investigate a suitability of electromagnetic waves for evaluating necking defects in bored piles embedded in sandy soils through laboratory experiments. Laboratory experiments are performed with a model pile having a necking defect. The diameter and length of model pile are 600 mm and 1 m, respectively, and the model pile is embedded in sandy soils with different water contents of 10%, 20%, and 30%. For the propagation of electromagnetic waves, a transmission line is configured in reinforcement cage using an electrical wire. The generation and detection of electromagnetic waves are conducted using a time domain reflectometer. Experimental results show that the peak amplitude of electromagnetic waves reflected at the necking defect decreases with an increase in the water content in sandy soils. In addition, the velocity of electromagnetic waves reflected from the toe of the model pile decreases win an increase in the water content. However, estimated locations of the necking defects are almost the same to that of the actual location of the necking defect. This study demonstrates that electromagnetic waves may be an effective method for evaluating necking defects in bored piles embedded in sandy soils

Spatial Heterogeneity of Bacteria: Evidence from Hot Composts by Culture-independent Analysis

  • Guo, Yan;Zhang, Jinliang;Deng, Changyan;Zhu, Nengwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.1045-1054
    • /
    • 2012
  • The phylogenetic diversity of the bacteria in hot composting samples collected from three spatial locations was investigated by molecular tools in order to determine the influence of gradient effect on bacterial communities during the thermophilic phase of composting swine manure with rice straw. Total microbial DNA was extracted and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, restriction fragment length polymorphism-screened and sequenced. The superstratum sample had the highest microbial diversity among the three samples which was possibly related to the surrounding conditions of the sample resulting from the location. The results showed that the sequences related to Bacillus sp. were most common in the composts. In superstratum sample, 45 clones (33%) and 36 clones (27%) were affiliated with the Bacillus sp. and Clostridium sp., respectively; 74 clones (58%) were affiliated with the Clostridium sp. in the middle-level sample; 52 clones (40%) and 29 clones (23%) were affiliated with the Clostridium sp. and Bacillus sp. in substrate sample, respectively. It indicated that the microbial diversity and community in the samples were different for each sampling site, and different locations of the same pile often contained distinct and different microbial communities.