• Title/Summary/Keyword: pile depth

Search Result 368, Processing Time 0.026 seconds

A Retrospection on Foundation Design of Taipei 101

  • Chin, Chung-Tien;Chao, Hsiao-Chou;Chang, Der-Wen
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.145-156
    • /
    • 2009
  • Large diameter bored pile was selected as the foundation type for Taipei 101. The pile construction method and specific construction procedures were determined based on the results of trial installation and pile load tests. The baseline for foundation design was established using the friction versus depth characteristics of each ground layer obtained from the pile load tests. As the ground profile and depth to the top of rock formation varied significantly on this site, the pile length, bearing capacity and settlement for single pile were analyzed using the information interpreted from adjacent boreholes. The post grouting at pile tip was mandatory for pile construction. Nevertheless, it was treated as a measure reducing the influence of construction uncertainties and providing extra safety for the foundation system.

  • PDF

Stability Analysis of Sheet Pile Reinforced with Strut (버팀대로 보강된 널말뚝의 안정해석)

  • Kim, Ji Hoon;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.226-236
    • /
    • 1997
  • The results obtained by elasto-plastic analysis method about the displacement, deformation and stability on the soft ground excavation using sheet pile were summarized as follows ; 1. In the case of strut 1 step, the maximum wall displacement value in the first and the second excavation was small, but it increase remarkably after the third excavation and when the excavation depth was 8m, the point of maximum wall displacement was shown 0.75H~0.8H. 2. The value of safety factor(Fs) was increased with increasing of the penetration depth of sheet pile, cohesion and internal friction angle of ground. Safety factor was mostly effected by penetration depth of sheet pile and more effected by cohesion than internal friction angle of ground. 3. Since the deformation of sheet pile of this ground from the results of analysis and measurement increased remarkabaly after 6m excavation depth, it was desirable that the point of strut installation was GL-6m. 4. Safe excavation depth on ground by analysis considered penetration depth, cohesion and internal friction was shown at the table 3.

  • PDF

Three-Dimensional Computational Modeling of Scour around Pile Groups (군말뚝 주변의 세굴 3차원 수치모의)

  • Kim, Hyung Suk;Park, Moonhyeong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.907-919
    • /
    • 2014
  • This study presents scour processes and its characteristics around the pile groups using the large eddy simulation (LES) coupled with sediment transport and morphodynamic models. The scour and deposition around pile groups were significantly influenced by the pile interval. In case the non-dimensional pile interval was less than 3.75, the local scours as well as the contraction scour were observed around the pile group. On the other hand, in case the non-dimensional pile interval was more than 3.75, the contraction scour disappeared and only local scours were developed at individual piles. Change in the scour depth at piles located in the upstream was similar with the case of single pile, but the scour depth around piles located in the downstream was lower and showed a significantly different tendency due to the presence of piles in the upstream. The non-dimensional maximum scour depth around the pile group decreased as the pile interval increased.

Reliability of Pile Driving Formula (항타공식의 신뢰도)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.209-216
    • /
    • 1999
  • Prefabricated piles used for construction of highway bridges are most of steel pipe piles and few of prestressed concrete piles. Its installation and inspection are less controllable and have much uncertainty due to changes in subsoil and groundwater conditions. However, most of these piles have been controlled using outdated pile driving formula such as Hiley's formula which models just the energy conservation due to its simple applicability in the field. This formula results in overstriking or sometimes understocking due to buckling of pile head. Engineers cannot ensure by the formula whether pile is installed properly. To compensate the drawbacks of excising pile formula, parameters in Hiley's formula and 55 formula are reviewed. Final sets used in pile formula and PDA test results(E.O.I.D) are measured during pile driving along the depth. These measured results along the depth were compared with each other and with N values, so that relations between the each result could be inferred. Also the factor of safety which can be used for pile driving formula are suggested.

  • PDF

Evaluation of Pile Bearing Capacity and Scale Effect Using Model Pile Test (모형실험을 통한 말뚝지지력의 평가 및 치수효과의 비교분석)

  • 이인모;이정학
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.37-44
    • /
    • 1993
  • Model pile tests in calibration chamber are performed in order to study the two factors that the pile bearing capacity is significantly influenced by. Those factors are the critical depth concept and the scale effect caused by pile diameters. Firstly, the predicted values of end bearing capacity from the various static formulae were compared with the measured ones from model pile tests. Secondly, the critical depth concept and the scale effect were investigated by using two different soil conditions in a series of calibration chamber tests : the one is uniform sand : and the other is weathered granites overlayered by sand. Main results obtained from the model tests can be summarized as follows : (1) The end bearing capacity was increased with pile penetration depth up to penetration ratio of 7 to 8 when the cell pressure is high, and the critical depth was observed in the current chamber tests with uniform sand layer , (2) The predicted end bearing capacities were mostly lager than the measured, and it was found that the differences between the predicted and the measured values became smaller as the pile penetration ratio was increased : (3) The end bearing capacity of the small diameter pile in weathered granites layer was mostly less than that of the larger pile, while in uniform sand layer it was vice.

  • PDF

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

Numerical Study for Application of Sheet Pile Retaining Wall Reinforced with H-pile (H-pile로 보강된 Sheet pile 흙막이 벽체의 적용을 위한 수치해석)

  • Cho, Kwangjun;Jun, Sanghyun;Suh, Jeeweon;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.23-33
    • /
    • 2015
  • This paper is results of numerical study for application of sheet pile retaining wall reinforced with H-pile as sheet piles are needed in field for a cutoff wall and are limited to use because of driveability in the ground condition of having a larger strength than a weathered rock. Extensive 101 cases of numerical approach were conducted to investigate the behavior of sheet pile retaining wall reinforced with H-pile, changing installing members of two types of sheet pile and three types of H-pile, the embedded depth of sheet pile and H-pile, the horizontal space between H-piles and excavation conditions. As the results of numerical analysis, combined use of the sheet pile SP-IIIA with H-Pile H250 and the sheet pile SP-IV with H-Pile H350 among precast products was found to be efficient since two members tended to reach allowable stresses simultaneously or have similar stress concentration ratios. Increased stiffness in reinforced sheet pile showed reduction of lateral displacement of wall. Embedded depth of sheet pile did not affect stability of wall significantly so that driving the penetrable depth of sheet pile should be enough to maintain stability of wall and satisfy purposes of cutoff and stiffness increase of wall.

A Study on Slope Safety Factor Variation by Pile Construction Depth and Space (억지말뚝 근입깊이 및 배치간격에 따른 사면 안전율 변화에 관한 연구)

  • Lee Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.115-121
    • /
    • 2005
  • At present, continual road constructions to connect from city to city are needed due to the geographical feature of Korea that about $70\%$ of the territory is mountainous area. Thus, the generation of large cut-slope has been inevitably formed. As a means of reinforcement on the cut-slope, in case of destructive disasters such as a snowstorm, pile embedment method is widely adopted. The pile embedment method is to resist possible move of soil by embedding piles from the surface to the immovable ground and then delivering the load from the piles to the immovable ground. In this study this writer analyzes the limitation of empirically used pile construction depth and its spacing through the numerical analysis. As a result, he suggests the most effective pile construction depth and space.

Calibration of Contact Depth for Evaluating Residual Stress using Instrumented Indentation Testing (연속압입시험법을 이용한 원전구조물의 잔류응력 평가를 위한 접촉깊이의 보정)

  • Kim, Young-Cheon;Kang, Seung-Kyun;Ahn, Hee-Jun;Kim, Kwang-Ho;Kwon, Dongil
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • Residual stress is the key parameter for reliability and lifetime assessment because it can reduce the fatigue strength and fracture properties of industrial structures. Recently, instrumented indentation testing (IIT) has been widely used for evaluating it, since it does not need specific specimen and time-consuming procedure. However, conventional Oliver-Pharr method, which is used for calibrating contact depth to analyze indentation load-depth curve, cannot estimate plastic pile-up between indenter and surface of specimen. Here, we introduce f parameter which is the ratio of contact depth and maximum depth, to consider pile-up height. And, its application for evaluating residual stress of weldment is introduced.

Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis

  • Raheem, Shehata E Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Fahmy, Mohamed F.M.;Mansour, Mahmoud H
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.407-421
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures, in addition to the structural integrity of platforms components under the maximum and minimum operating loads when subjected to the environmental conditions. In-place analysis have been executed to check that the structural member with all appurtenance's robustness have the capability to support the applied loads in either storm or operating conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the dynamic characteristics of the platform model and the response of platform joints then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have significant effects in the results of the in-place analysis behavior. The most of bending moment responses of the piles are in the first fourth of pile penetration depth from pile head level. The axial deformations of piles in all load combinations cases of all piles are inversely proportional with penetration depth. The largest values of axial soil reaction are shown at the pile tips levels (the maximum penetration level). The most of lateral soil reactions resultant are in the first third of pile penetration depth from pile head level and approximately vanished after that penetration. The influence of the soil-structure interaction on the response of the jacket foundation predicts that the flexible foundation model is necessary to estimate the force responses demands of the offshore platform with a piled jacket-support structure well.