• Title/Summary/Keyword: pile behaviour

Search Result 119, Processing Time 0.023 seconds

Prediction of nonlinear characteristics of soil-pile system under vertical vibration

  • Biswas, Sanjit;Manna, Bappaditya;Choudhary, Shiva S.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.223-240
    • /
    • 2013
  • In the present study an attempt was made to predict the complex nonlinear parameters of the soil-pile system subjected to the vertical vibration of rotating machines. A three dimensional (3D) finite element (FE) model was developed to predict the nonlinear dynamic response of full-scale pile foundation in a layered soil medium using ABAQUS/CAE. The frequency amplitude responses for different eccentric moments obtained from the FE analysis were compared with the vertical vibration test results of the full-scale single pile. It was found that the predicted resonant frequency and amplitude of pile obtained from 3D FE analysis were within a reasonable range of the vertical vibration test results. The variation of the soil-pile separation lengths were determined using FE analysis for different eccentric moments. The Novak's continuum approach was also used to predict the nonlinear behaviour of soil-pile system. The continuum approach was found to be useful for the prediction of the nonlinear frequency-amplitude response of full-scale pile after introducing the proper boundary zone parameters and soil-pile separation lengths.

Numerical study on the optimal position of a pile for stabilization purpose of a slope

  • Boulfoul, Khalifa;Hammoud, Farid;Abbeche, Khelifa
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.401-411
    • /
    • 2020
  • The paper describes the influence of pile reinforcement on the stability of the slope behaviour, and the exploitation of the results of in situ measurements will be conducted. In the second part, a 2D numerical modelling will be conducted by using the finite element code PLAXIS2D; in order to validate the proposed modelling approach by comparing the numerical results with the measurements results carried out on the slides studied; to study the effect of positioning of piles as a function of the shear parameters of the supported soil on the behaviour of the soil. For various shear strength of the soil a row of pile position is found, at which the piles offer the maximum contribution to slope stability. The position of piles is found to influence the safety factor in granular soil whereas it shows a slight influence on the safety factor in coherent soil. The results also indicate that the ideal position for such stabilizing piles is in the middle height of the slope. Comparison of results of present study with literature from publication: indicated that to reach the maximum stability of slope, the pile must be installed with Lx/L ratio (0.37 to 0.62) and the inclination must be between 30° to 60°. Even, after a certain length of the pile, the increasing will be useless. The application of the present approach to such a problem is located at the section of PK 210+480 to 210+800 of the Algerian East-West Highway.

Investigation of Strain Behaviour around the Tip of Model Pile - Comparison between Laboratory Model Test and Numerical Analysis - (모형말뚝 선단부 주변의 변형률 거동 분석 - 실내모형실험과 수치해석 비교 -)

  • Lee, Yong Joo;Lee, Jung-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.159-167
    • /
    • 2012
  • In this study, laboratory model pile-load test and finite element analysis were carried out to compare and analyze the strain behaviour around the model pile tip. In order to simulate the pile load, both the LCM(load control method)and DCM(displacement control method) were introduced to determine which one is appropriate for the FE simulation. In contrast to the previous simulation method, two interface elements around the model pile were used to consider the slip effect in the finite element analysis and its results were compared to the model test. Through this study it was found that the degree of non-associated flow was a dominant factor in terms of numerical solution convergence. In addition, an improved FE mesh was required to obtain the symmetric distribution of the maximum shear strain contour.

A Study on the Engineering Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Finite Element Analysis (실규모 현장시험 및 유한요소해석을 통한 강관매입말뚝의 공학적 거동에 대한 연구)

  • Kim, Jeong-Sub;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.5-16
    • /
    • 2018
  • In the current study, the engineering behaviour of prebored and precast steel pipe piles was examined from a series of full-scale field measurements by conducting static pile load tests, dynamic pile load tests (EOID and restrike tests) and Class-A and Class-C1 type numerical analysis. The study includes the pile load - settlement relations, allowable pile capacity and shear stress transfer mechanism. Compared to the allowable pile capacity obtained from the static pile load tests, the dynamic pile load tests and the numerical simulation showed surprisingly large variations. Overall among these the restrike tests displayed the best results, however the reliability of the predictions from the numerical analysis was lower than those estimated from the dynamic pile load tests. The allowable pile capacity obtained from the EOID tests and the restrike tests indicated 20.0%-181.0% (avg: 69.3%) and 48.2%-181.1% (avg: 92.1%) of the corresponding measured values from the static pile loading tests, respectively. Furthermore, the computed results from the Class-A type analysis showed the largest scatters (37.1%-210.5%, avg: 121.2%). In the EOID tests, a majority of the external load were carried by the end bearing pile capacity, however, similar skin friction and end bearing capacity in magnitude were mobilised in the restrike tests. The measured end bearing pile capacity from the restrike tests were smaller than was measured from the EOID tests. The present study has revealed that if the impact energy is not sufficient in a restrike test, the end bearing pile capacity most likely will be underestimated. The shear stresses computed from the numerical analysis deviated substantially from the measured pile force distributions. It can be concluded that the engineering behaviour of the pile is heavily affected if a slime layer exists near the pile tip, and that the smaller the stiffness of the slime and the thicker the slime, the greater the settlement of the pile.

Behavior of Pile Groups in Multi-layers Soil under Lateral Loading (다층지반에서 횡하중을 받는 군말뚝의 거동)

  • Kim, Yongmoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • This paper deals with the results for a numerical analysis of single piles and pile groups in multi-layers soil(granite soil-clay-granite soil) subjected to monotonous lateral loading using the ABAQUS finite element software. The investigated variables in this study include free head and embedded capped single pile, pile diameter (0.5m), pile length (10m), and pile groups. Numerical analyses were conducted by variation of spacing piles(s=3D, 4D, 5D) to compare the behaviour of single pile without cap and group pile. The $1{\times}3$ pile group(leading pile, middle pile, trail pile) was selected to investigate the individual pile and group lateral resistance, the distribution of the resistance among the piles. The analysis model of clay and the material of granite soil was modeled by using Druker-Prager constitutive relationship and existing treatise respectively. The pile was considered as a elastic circular concrete pile. As a result, the more pile space was extended, the value of P-multiplier is appeared to be less effective to leading pile. The lateral resistance of single-layer showed approximately 4-20% larger than the multi-layers.

A Study on the Behaviour of Single Piles to Adjacent Tunnelling in Stiff Clay (견고한 점토층에서 실시된 터널근접시공으로 인한 단독말뚝의 거동에 대한 연구)

  • Jeon, Youngjin;Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.13-22
    • /
    • 2015
  • In the current work, a series of three-dimensional (3D) numerical modelling has been performed in order to study the effects of the relative locations of tunnels with respect to the position of pile tips which governs the behaviour of pre-existing, adjacent single piles. In the numerical analyses, several governing factors, such as tunnelling-induced pile head settlements, relative displacements, volume losses, axial pile forces, interface shear stresses and apparent factors of safety have been analysed. When the pile tips are inside the tunnelling influence zone, of which the pile tip location is considered with respect to the tunnel position, tunnelling-induced pile head settlements are larger than the ground surface settlements, resulting in tunnelling-induced tensile pile forces. On the contrary, when the pile tips are outside the influence zone, compressive pile forces associated with downward shear stresses at the upper part of the piles are developed. Based on computed load and displacement relation of the pile, the apparent factors of safety of the piles inside the tunnelling influence zone have been reduced by 36% in average. The shear transfer mechanism based on the relative tunnel locations has been analysed in great detail by considering tunnelling-induced pile forces, interface shear stresses and the apparent factors of safety.

Analysis of pile-up/sink-in during spherical indentation for various strain hardening levels

  • Shankar, S.;Loganathan, P.;Mertens, A. Johnney
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.429-442
    • /
    • 2015
  • The measurement from the indentation process depends on the amount of pile-up or sink-in around the contact impressions. In this paper, finite element concept is utilized to study the pile-up and sink-in behaviour for the wide range of materials with different young's modulus, yield stresses, strain-hardening exponents and coefficient of friction values. The exact indentation model is created by using the two dimensional axisymmetrical model for simulating the spherical indentation process on the lines of Taljat and Pharr (2004) work. The result shows that during spherical indentation process the amount of pile-up is greatly influenced by the strain hardening exponents in addition to other material properties and depth of penetration. The numerical results from the finite element analysis are also validated using the exact multilinear material properties obtained from the tensile testing for the materials like mild steel, brass and aluminium.

Upper and Lower Bound Solutions for Pile-Soil-Tunnel Interaction (한계해석법에 의한 파일-지반-터널 상호작용 해석)

  • Lee Yong-Joo;Shin Jong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.77-86
    • /
    • 2005
  • In urban areas, new tunnel construction work is often taking place adjacent to existing piled foundations. In this case, careful assessment for the pile-soil-tunnel interaction is required. However, research on this topic has not been much reported, and currently only limited information is available. In this study, the complex pile-soil-tunnel interaction is investigated using the upper and lower bound methods based on kinematically possible failure mechanism and statically admissible stress field respectively. It is believed that the limit theorem is useful in understanding the complicated interaction behaviour mechanism and applicable to the pile-soil-tunnel interaction problem. The results are compared with numerical analysis. The material deformation patterns and strain data from the FE output are shown to compare well with the equivalent physical model tests. Admissible stress fields and the failure mechanisms are presented and used to develop upper and lower bound solutions to assess minimum support pressures within the tunnel.

  • PDF

Driveability Analysis of Non Welding Composite Pile (무용접 복합말뚝의 항타관입성 분석에 관한 연구)

  • Shin, Yun-Sup;Kim, Nam-Ho;Boo, Kyo-Tag;Lee, Jong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.729-737
    • /
    • 2008
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile foundation is more to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in civil or architectural construction, steel pile is largely used with its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is about the Composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile simultaneously while preserving the advantage of steel pile that large resistance to horizontal force and bending moment. A Non Welding connection method is applied to this composite pile and this method could reduce the cost and period of construction and could increase the quality of construction by solving the problem of current welding method and by improving the workability of pile connection. In this study, characteristics of driveability of non welding composite pile is analyzed prior to main project while the purpose of main project is proving the applicability of Non Welding Composite Pile by conducting various kind of loading test to analyze the characteristics behaviour of Non Welding Composit Pile and by verifying stability of non welding connection pile.

  • PDF

Verifications of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft using Full Scale Tests (현장시험에 의한 충격반향기법의 말뚝 건전도 검사 적용성 평가)

  • Jung, Gyung-Ja;Cho, Sung-Min;Kim, Hong-Jong;Jung, Jong-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.33-40
    • /
    • 2005
  • Impact-echo test, a kind of simple and economical method to evaluate the integrity of drilled piles has some limitations to use because the stress wave can be generated only on the head of a pile and the wave propagation in the pile with surrounding soils are very complicated. Numerical analyses and model tests in the laboratory have shown that both the ratio of length to diameter of a pile and the stiffness ratio of pile to soil have influence on the resolution of testing results. Full scale testing piles which have artificial defects were used to verify the capability of impact-echo technique as a tool for the pile integrity evaluation. Behaviour of the reflected signal of stress wave was investigated according to the type of defects. Elastic modulus of the pile was calculated using the wave velocity in the pile and the unconfined strength of concrete specimen. Influences of the stiffness difference between the pile and the ground on the characteristics of a wave signal were also examined.

  • PDF