• Title/Summary/Keyword: pile behaviour

Search Result 119, Processing Time 0.018 seconds

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling (터널근접시공에 의한 기 존재하는 인접말뚝의 거동에 지반보강이 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Sung-Hee;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.389-407
    • /
    • 2017
  • In the current work, a series of three-dimensional finite element analysis was carried out to understand the behaviour of pile when the tunnel passes through the lower part of a single pile or group piles. At the current study, the numerical analysis analysed the results regarding the ground reinforcement condition between the tunnel and pile foundation. In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the total displacements near the tunnel have been thoroughly analysed. The pile head settlements of the single pile with the maximum level of reinforcement decreased by about 16% compared to the pile without ground reinforcement. Furthermore, the maximum axial force of the single pile with the maximum level of ground reinforcement experienced a 30% reduction compared to the pile without reinforcement. It has been found that the angle of ground reinforcement in the transverse direction affects the pile behaviour more so than the length of the ground reinforcement in the longitudinal direction. On the other hand, in the case of the pile group with the reinforced pile cap, the ground displacement near the pile tip appears to be similar to the corresponding ground displacement without reinforcement. However, it was found that the pile cap near the pile head greatly restrained the pile head movement and hence the axial pile force increased by about 2.5 times near the pile top compared to the piles in other analysis conditions. The behaviour of the single pile and group piles, depending on the amount of ground reinforcement, has been extensively examined and analysed by considering the key features in great details.

Behaviour of vertically and horizontally loaded pile and adjacent ground affected by tunnelling

  • Oh, Dong-Wook;Ahn, Ho-Yeon;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.861-868
    • /
    • 2018
  • Recent occurrences of earthquakes in Korea have increased the importance of considering how horizontal loads affect foundation structures as a result of wind and dynamic impact. However, to date, there are few studies on tunnelling-induced behaviour of ground and pile structures simultaneously subjected to horizontal and vertical loads. In this research, therefore, the behaviour of ground and single piles due to tunnelling were investigated through a laboratory model test. Three cases of horizontal loads were applied to the top of the pile. In addition, a numerical analysis was carried out to analyse and compare with the results from the laboratory model test.

A Study on the Characteristic Behavior of the Lateral Load Piles using the Strain Wedge Model and Laboratory Model Test (실내모형실험과 변형률 쐐기모델을 이용한 수평하중을 받는 말뚝의 거동 특성에 관한 연구)

  • Kim, HongTaek;Han, YeonJin;Kim HongLak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.103-112
    • /
    • 2012
  • The most of original horizontal bearing capacity theory of the pile is not efficiently to consider interaction between soil and pile because it is only to consider the earth pressure theory and separately the ground form pile. In recent, in order to improve the pile technology, it is necessary to confirm the real behaviour characteristics of pile under lateral load. Hence, to evaluate the behaviour characteristics of the single and group pile under lateral loads using the strain wedge model that could consider the interaction between soil and piles. Primarily, laboratory scale down model tests was carried out to predict the behaviour characteristics on real size piles using the strain wedge model. The comparative analyses between model test and numerical analysis for the evaluation of whole behaviour were conducted.

Dynamic Behaviour of Pile Foundation with Scour (세굴을 고려한 말뚝기초의 동적 거동분석)

  • 김정환;허택영;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.55-62
    • /
    • 2003
  • This study considered the effect of scour depth on the behaviour of pile foundation of bridge structure under seismic excitation. The numerical model was composed of the superstructure, pile foundation and soil. The superstructure and pile was modeled by beam elements and soil was by spring elements. The pile head and concrete footing was considered as hinge and rigid connected situation, respectively. A toro-gap element was used to model the expansion joint of superstructure. Nonlinear dynamic analysis was carried out on the constructed model. It was acknowledged that the steel pile become to yield after the scour depth reached about 2.0m.

  • PDF

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

Investigation of Pile Behaviour according to Interface Properties - Comparison between Pile Model Test Using Close Range Photogrammetry and Numerical Analysis (경계면 물성치에 따른 말뚝 거동 분석 - 근거리 사진계측을 이용한 모형시험과 수치해석 비교)

  • Lee, Jung-Min;Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.29-39
    • /
    • 2014
  • In this study, model pile-load test with numerical analysis was carried out to compare and analyze pile behaviour according to interface properties. In the model test, Close Range Photogrammetry (CRP) was chosen to measure the ground deformation. In addition, model steel and concrete piles were used. Based on the model pile test, interface elements around the model pile were used to simulate the slip effect. Interface properties were adopted as interface reduction factor $R_{inter}$. Interface reduction factor, $R_{inter}$ plays a key role in the interface properties. Through this study, it was found that the model ground behaviour measured by CRP corresponded well to the one predicted by the numerical analysis. And, the interface strength reduction factor, $R_{inter}$ value of the steel pile was higher than that of the concrete pile.

A study on degree of inclination of model pile due to tunnelling (터널굴착에 따른 모형말뚝의 기울기 정도 연구)

  • Lee, Yong-Joo;Hwang, Jae-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.305-317
    • /
    • 2011
  • In this study, both the model test and the numerical analysis were carried out to figure out the physical behaviour of the model pile during the tunnelling. As a result, both the vertical and the horizontal displacements were simultaneously occurred in the model pile which is subjected to the working load during the volume loss. Consequently, the phenomenon of inclination took place in the model pile. The degree of inclination of the model pile depends on volume loss due to tunnel excavation, pile tip's offset from the tunnel centre, and bearing ground conditions in which pile tip is located. Therefore, in the planning stage of urban tunnelling not only the ground behaviour with respect to the pile locations, but also the physical behaviour of pile itself should be carefully analysed to avoid damage of adjacent buildings.

A study on the behaviour of pre-existing single piles to adjacent shield TBM tunnelling from three-dimensional finite element analyses (3차원 유한요소해석을 통한 shield TBM 터널 근접시공에 의한 인접 단독말뚝의 거동에 대한 연구)

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.23-46
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles to adjacent tunnelling by considering the tunnel face pressures and the relative location of pile tips with respect to the tunnel. The numerical modelling has analysed the effect of the face pressures on the pile behaviour. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. The head settlements of the pile (the vertical distance between the pile and the tunnel: 0.25D, where D is the tunnel diameter) directly above the tunnel crown with the face pressure 50% of the in-situ horizontal soil stress at the tunnel springline decreased by about 38% compared to corresponding settlements with a face pressure 25% of the in-situ horizontal soil stress at the tunnel springline. Furthermore, it was found that the smaller the face pressure, the larger the tunnelling-induced ground movements and the axial pile forces were and the higher the degree of the shear strength mobilisation at the pile-soil interface. When the piles were outside the tunnel influence zone, compressive pile forces were developed due to tunnelling. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures and the position of the pile tip relative to the tunnel. In addition, the computed results have been compared with relevant studies previously reported in literature. The behaviour of the piles has been extensively examined and analysed by considering the key features in great detail.

A Study on the Behaviour of a Single Pile to Adjacent Tunnelling Conducted in the Lateral Direction of the Pile (단독말뚝의 측면으로 시공되는 터널에 의한 말뚝의 거동 연구)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2011
  • Three-dimensional(3D) numerical analyses have been conducted to study the behaviour of a single pile to adjacent tunnelling conducted in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the pile has been analysed. The study includes the pile settlement, the relative shear displacement between the pile and the soil, the shear stresses at the soil next to the pile and the axial force on the pile. In particular, the shear stress transfer mechanism along the pile related to the tunnel advancement has been rigorously analysed. Due to changes in the relative shear displacement between the pile and the soil next to the pile during the tunnel advancement, the shear stress and the axial force distributions along the pile have been changed. Downward shear stress developed above the tunnel springline (Z/L=0.0-0.7~0.8), while upward shear stress is mobilised below the tunnel springline (Z/L=0.7~0.8-1.0) resulting in compressive force on the pile, where Z is the pile location and L is the pile length. Maximum compressive force of about $0.475P_a$ was developed on the pile after completion of tunnel advancement, where $P_a$ is the allowable pile capacity. Some insights into the pile behaviour to tunnelling obtained from the numerical analyses will be reported and discussed.