• Title/Summary/Keyword: pigment expression

Search Result 111, Processing Time 0.015 seconds

Flavonoid Biosynthesis: Biochemistry and Metabolic Engineering (Flavonoid 생합성:생화학과 대사공학적 응용)

  • Park, Jong-Sug;Kim, Jong-Bum;Kim, Kyung-Hwan;Ha, Sun-Hwa;Han, Bum-Soo;Kim, Yong-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.265-275
    • /
    • 2002
  • Flavonoid biosynthesis is one of the most extensively studied areas in the secondary metabolism. Due to the study of flavonoid metabolism in diverse plant system, the pathways become the best characterized secondary metabolites and can be excellent targets for metabolic engineering. These flavonoid-derived secondary metabolites have been considerably divergent functional roles: floral pigment, anticancer, antiviral, antitoxin, and hepatoprotective. Three species have been significant for elucidating the flavonoid metabolism and isolating the genes controlling the flavonoid genes: maize (Zea mays), snapdragon (Antirrhinum majus) and petunia (Prtunia hybrida). Recently, many genes involved in biosynthesis of flavonoid have been isolated and characterized using mutation and recombinant DNA technologies including transposon tagging and T-DNA tagging which are novel approaches for the discovery of uncharacterized genes. Metabolic engineering of flavonoid biosynthesis was approached by sense or antisense manipulation of the genes related with flavonoid pathway, or by modified expression of regulatory genes. So, the use of a variety of experimental tools and metabolic engineering facilitated the characterization of the flavonoid metabolism. Here we review recent progresses in flavonoid metabolism: confirmation of genes, metabolic engineering, and applications in the industrial use.