• Title/Summary/Keyword: piezoresistive

Search Result 146, Processing Time 0.029 seconds

Ceramic Pressure Sensors Based on CrN Thin-films (CrN박막 세라믹 압력센서)

  • Chung, Gwiy-Sang;Seo, Jeong-Hwan;Ryu, Gl-kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.573-576
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromium nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5∼25 %)Na$_2$). The deposited CrN thin-films with thickness of 3577${\AA}$ and annealing conditions(300$^{\circ}C$, 48 hr) in Ar-10 % N$_2$deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho$=1147.65 ${\mu}$$\Omega$cm, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

Nano Force Metrology and Standards (나노 힘 측정 및 표준)

  • Kim M.S.;Park Y.K.;Choi J.H.;Kim J.H.;Kang D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.59-62
    • /
    • 2005
  • Small force measurements ranging from 1 pN to $100{\mu}N$, we call it Nano Force, become the questions of common interests of biomechanics, nanomechanics, material researches, and so on. However, unfortunately, quantitative and accurate force measurements have not been taken so far. This is because there ,are no traceable force standards and a calibration scheme. This paper introduces a quantitative force metrology, which provides traceable link to SI (International Systems of Units). We realize SI traceable force ranging from 1 nN to $100{\mu}N$ using an electrostatic balance and disseminate it through transfer standards, which are self-sensing cantilevers that have integrated piezoresistive strain gages. We have been built a prototype electrostatic balance and Nano Force Calibrator (NFC), which is an AFM cantilever calibration system. As a first experiment, we calibrated normal spring constants of commercial AFM cantilevers using NFC. Calibration results show that the spring constants of them are quite differ from each other and nominal values provided by a manufacturer (up to 240% deviation).

  • PDF

The evaluation of the effect of residual stress induced in piezoresistor on resistance change ratio distribution (압저항체에서 발생하는 잔류응력이 저항변화율 분포도에 미치는 영향성 평가)

  • Shim J.J.;Han G.J.;Lee S.W.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.790-793
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the effect of residual stress induced in piezoresistor on the distribution of resistance change ratio and supposed the feasible position of piezoresistor. The resulting are following; The tensile residual stress in the vicinity of piezoresistor decreased the value of resistance change ratio and could not effect on all the area of diaphragm but local area around the piezoresistor. Also, the piezoresistor in the diaphragm type pressure sensor with boss should fabricate in the edge of boss in order to increase the sensitivity of pressure sensor.

  • PDF

A Study on Piezoresistive Characteristics of Smart Nano Composites based on Carbon Nanotubes for a Novel Pressure Sensor (압력센서 개발을 위한 탄소 나노 튜브 기반 지능형 복합소재 전왜 특성 연구)

  • Kim, Sung Yong;Kim, Hyun Ho;Choi, Baek Gyu;Kang, In Hyuk;Lee, Ill Yeong;Kang, In Pil
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.

A Study on Load Cell Development by means of a Nano-Carbon Piezo-resistive Composite and 3D printing (탄소나노튜브 복합소재 전왜 특성과 3D 프린팅을 활용한 로드셀 개발 연구)

  • Kang, Inpil;Joung, Kwan Young;Choi, Beak Gyu;Kim, Sung Yong;Oh, Gwang Won;Kim, Byung Tak;Baek, Woon Kyung
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.97-102
    • /
    • 2020
  • This paper presents the basic research for the design and fabrication of a 3D-printed load cell made of NCPC (nano-carbon piezo-resistive composite). We designed a structure that can resonate at a low frequency range of about 5-6 Hz with ANSYS using sensitivity analysis and a response surface method. The design was verified by fabricating the device with a low-quality commercial 3D printer and ABS filament. We conducted a feasibility test for a commercial sensor using 1000 cyclic load tests at 0.3 Hz in a material testing system. A manufacturing process for the 3D printer filament based on the NCPC was also developed using the nano-composite process.

A Thermal Blood Flow Sensor with Contact Force Compensation (접촉력 보정이 가능한 열적 방식의 혈류량 측정기)

  • Sim, Jai Kyoung;Youn, Sechan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.237-242
    • /
    • 2013
  • This paper proposes a thermal peripheral blood flowmeter integrated with a force sensor that is capable of contact force compensation. We fabricate this blood flowmeter using a nickel RTD (resistance temperature detector) and piezoresistive force sensor by using microfabrication technology. In an experiment, we obtained a decreasing trend for the blood flow under an increasing contact force with a linear tendency of 31.7%/N. We then performed a compensation process based on this obtained trend. As a result, the maximum variance in the blood flow at 1-3N was 9.8%. Thus we achieved consistent blood flow measurement independent of the contact force. In this work, we verified that the thermal blood flowmeter integrated with a force sensor has the ability to accurately measure the blood flow independent of the contact force.

A Study on a Highly Sensitive Strain Sensor based on Rayleigh Wave (레일리파 기반의 고감도 변형률 센서에 관한 연구)

  • Lee, Ki Jung;Jo, Minuk;Fu, Chen;Eun, Kyoungtae;Oh, Haekwan;Choa, Sung-Hoon;Yang, Sang Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.495-501
    • /
    • 2014
  • Piezoresistive-type, capacitive-type, and optical-type sensors have mainly been used for measuring a strain. However, in building a sensor network for remote monitoring using these conventional sensors there are disadvantages such as the complexity of a measuring system including wireless communication circuitry and high cost. In this paper, we demonstrates a highly-sensitive surface acoustic wave (SAW) strain sensor which is advantageous to harsh environments and wireless network. We designed and fabricated the SAW strain sensor. The SAW strain sensor attached on a specimen was tested with a tensile tester. The strain on the sensor surface was measured with a commercial strain gauge and compared with that obtained from strain analysis. The central frequency shift of the SAW sensor was measured with a network analyzer. The sensitivity of the SAW strain sensor is 134 $Hz/{\mu}{\varepsilon}$ which is high compared to previous results.

A Simple Analytical Model for MEMS Cantilever Beam Piezoelectric Accelerometer and High Sensitivity Design for SHM (structural health monitoring) Applications

  • Raaja, Bhaskaran Prathish;Daniel, Rathnam Joseph;Sumangala, Koilmani
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.78-88
    • /
    • 2017
  • Cantilever beam MEMS piezoelectric accelerometers are the simplest and most widely used accelerometer structure. This paper discusses the design of a piezoelectric accelerometer exclusively for SHM applications. While such accelerometers need to operate at a lower frequency range, they also need to possess high sensitivity and low noise floor. The availability of a simple model for deflection, charge, and voltage sensitivities will make the accelerometer design procedure less cumbersome. However, a review of the open literature suggests that such a model has not yet been proposed. In addition, previous works either depended on FEM analysis or only reported on the fabrication and characterization of piezoelectric accelerometers. Hence, this paper presents, for the first time, a simple analytical model developed for the deflection, induced voltage, and charge sensitivity of a cantilever beam piezoelectric accelerometer.The model is then verified using FEM analysis for a range of different cases. Further, the model was validated by comparing the induced voltages of an accelerometer estimated using this model with experimental voltages measured in the accelerometer after fabrication. Subsequently, the design of an accelerometer is demonstrated for SHM applications using the analytical model developed in this work. The designed accelerometer has 60 mV/g voltage sensitivity and 2.4 pC/g charge sensitivity, which are relatively high values compared to those of the piezoresistive and capacitive accelerometers for SHM applications reported earlier.

Fabrication of the Three Dimensional Accelerometer using Bridge Combination Detection Method (브리지조합 검출방식을 이용한 고온용 3축 가속도센서 제작)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.196-202
    • /
    • 2000
  • In this paper, we proposed the new bridge combination detection method for three dimensional piezoresistive silicon accelerometer, and the accelerometer with SOI structures was fabricated by bulk micromachining technology for using higher temperature than $200^{\circ}C$. The sensitivities of fabricated accelerometer for X, Y and Z-axis acceleration were about 8mV/V G, 8mV/V G and 40mV/V G. The nonlinearity of the output voltage was 1.6%FS and cross-axis sensitivity was within 4.6%. We confirmed that the three bridges detection method is very simple and the output characteristics of this accelerometer were similar to arithmetic circuit method accelerometer. The temperature characteristics of SOI structure accelerometer showed high operating temperature and good stability. And the temperature coefficient of offset voltage and sensitivity were $1033ppm^{\circ}C^{-1}$ and $1145ppm^{\circ}C$ respectively.

  • PDF

SOl Pressure Sensors (SOI 압력(壓力)센서)

  • Chung, Gwiy-Sang;Ishida, Makoto;Nakamura, Tetsuro
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.5-11
    • /
    • 1994
  • This paper describes the characteristics of a piezoresistive pressure sensor fabricated on a SOI (Si-on-insulator) structure, in which the SOI structures of Si/$SiO_{2}$/Si and Si/$Al_{2}O_{3}$/Si were formed by SDB (Si-wafer direct bonding) technology and hetero-epitaxial growth, respectively. The SOI pressure sensors using the insulator of a SOI structure as the dielectrical isolation layer of piezoresistors, were operated at higher temperatures up to $300^{\circ}C$. In the case of pressure sensors using the insulator of a SOI structure as an etch-stop layer during the formation of thin Si diaphragms, the pressure sensitivity variation of the SOI pressure sensors was controlled to within a standard deviation of ${\pm}2.3%$ over 200 devices. Moreover, the pressure sensors fabricated on the double SOI ($Si/Al_{2}O_{3}/Si/SiO_{2}/Si$) structures formed by combining SDB technology with epitaxial growth also showed very excellent characteristics with high-temperature operation and high-resolution.

  • PDF