• Title/Summary/Keyword: piezoelectricity

Search Result 154, Processing Time 0.028 seconds

Linear shell elements for active piezoelectric laminates

  • Rama, Gil;Marinkovic, Dragan Z.;Zehn, Manfred W.
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.729-737
    • /
    • 2017
  • Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

Study on Development of Piezoelectricity Generator Device using Walking Energy (보행에너지를 이용한 압전식 발전장치 개발에 관한 연구)

  • Kim Dong Sok;Park Gwan Soo;Choi Hyeung Sik;Lee Byeong Woo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.974-976
    • /
    • 2004
  • 현대 정보사회는 교통수단의 발달과 더불어, 휴대용 기기의 급속적인 발전을 가져왔다. 따라서, 휴대용 기기의 전원에 관한 많은 연구가 진행되고 있다. 그러나 여전히 시간적 제약을 받는 배터리에 대부분의 휴대용 기기가 의존하고 있다. 이에 본 연구에서는 사람들이 동작하는 동안 항상 버려지는 체중에 의한 에너지를 이용한 발전장치를 설계하였다. 이 발전장치는 외력을 주었을 때, 대전압${\cdot}$소전류를 발생하는 평판형 압전소자의 특성을 이용한 장치이다.

  • PDF

Study on behavior of multilayer ceramic capacitor caused by piezoelectricity (압전효과에 의한 적층 세라믹 콘덴서의 거동 분석)

  • Park, No-Cheol;Ko, Byung-Han;Park, Young-Pil;Ahn, Younggyu
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.61-64
    • /
    • 2014
  • Vibration and acoustic noise arise from the Multilayer Ceramic Capacitor (MLCC) because of the piezoelectric effect of dielectric substance which consists of $BaTiO_3$. However, the phenomenon is not analyzed clearly because the MLCC shows different behavior compare with ordinary piezoelectric substance like PZT. Thus, MLCC was tested under the several DC bias conditions and heat treatment effect was also tested and analyzed in this paper. From the test, MLCC shows not only piezoelectric effect but also another physical phenomenon like electrostriction. Also, it was verified that DC bias affect to the piezoelectric constant of MLCC.

First-principles Predictions of Structures and Piezoelectric Properties of PbTiO3 Single Crystal

  • Kim, Min Chan;Lee, Sang Goo;Joh, Cheeyoung;Seo, Hee Seon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.29-32
    • /
    • 2016
  • Using the various exchange-correlation functionals, such as LDA, GGA-PBE, GGA-PBEsol and GGA-AM05 functionals, first principle studies were conducted to determine the structures of paraelectric and ferroelectric PbTiO3. Based on the structures determined by the various functionals, the piezoelectric properties of PbTiO3 are predicted under the density-functional perturbation theory (DFPT). The present prediction with the various GGA functionals are closer to the experimental findings compared to the LDA values. The present DFT calculations using the GGA-PBEsol functional estimate the experimental data more reasonably than the conventional LDA and GGA fucntionals. The GGA-AM05 functional also predicts the experimental data as well as the GGA-PBEsol. The piezoelectric tensor calculated with PBEsol is relatively insensitive to pressure.

Optimized Fabrication of FGMs and DIC Evaluation (FGMs의 최적화 제조와 DIC 평가)

  • Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.27-32
    • /
    • 2011
  • Recently new technological development needs the advances in the fields of new materials. The most advanced design is not useful if new material's performance is not realized adequately for bearing the service loads and conditions. FGMs suggests the reasonable solution for the those requirements because of its wide range microstructure and the continuous constitutions. It's especially good for the heat-resisting components, piezoelectricity and aerocraft fields. However the fabrication and its experimental estimation methods have not been established because of its various freedom of material's properties. Therefore it is necessary to develope the fabrication method and estimation of strength and deformation. The experiments are conducted under a four point flexural test. According to results, this study shows that FGMs is well fabricated and the deformation and strain fields are expressed very well by digital image correlation method.

Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method (스프레이 코팅법으로 제조된 CNT/PVDF 압전 복합막의 자기분극 메커니즘)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.550-554
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process.

A Study on the electrical condution phenomena and TSC of PVDF thin films fabricated by PVD method (진공증착법에 의해 제조된 PVDF 박막의 전기전도현상과 열자격전류에 관한 연구)

  • 이선우;박수홍;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.187-193
    • /
    • 1999
  • In this study, PVDF thin films which show the excellent piezoelectricity and pyroelectricity, are prepared by PVD (physical vapor deposition) method, and thir electrical conduction phenomena for analyses of the electrical conduction mechanism and TSC (Thermally Stimulated Current) for identification of the behavior of conductive carriers are investigated. As a result of FT-IR(Fourier Transform Infrared Spectroscopy) spectra, the crystalline phase transforms $\alpha$ type into $\beta$ type with increasing electric field. From XRD (X-Ray diffraction) analyses patterns, the degree of crystallinity increases from 49.8% to 67%, as the substrate temperature increases from $30^{\circ}C$ to $80^{\circ}C$. As a result of electrical conduction phenomena, the electrical conduction mechanism of PVDF thin films is identified as ionic conduction mechanism. From TSC analyses, there are three peaks as P1, P2, P3 with increasing temperature, and with increasing substrate temperature, the peak temperature of TSC increases and the peak intensity of TSC decreases.

  • PDF

Study on In-plane Strains of Electro-Active Paper (생체 모방 종이 작동기의 면내 변형에 관한 연구)

  • Jung, Woo-Chul;Kim, Jae-Hwan;Lee, Sun-Kon;Bae, Seung-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.727-730
    • /
    • 2005
  • Cellulose based Electro-Active Papers (EAPap) is very promising material due to its merits in terms of large bending deformation, low actuation voltage, ultra-lightweight, and biodegradability. These advantages make it possible to utilize applications, such as artificial muscles and achieving flapping wings, micro-insect robots and smart wall papers. This paper investigates the in-plane strains of EAPap under electric fields, which are useful for a contractile actuator application The preparation of EAPap samples and the in-plane strain measurement system are explained, and the test results are shown in terms of electric field, frequency and the oriental ions of the samples. The power consumption and the strain energy of EAPap samples are discussed. Although there are still unknown facts in EAPap material, this in-plane strain may be useful for artificial muscle applications.

  • PDF

Surface Acoustic Wave Sensor Using Electroactive Paper(EAPap) (Electroactive Paper(EAPap)를 이용한 표면탄성파 센서)

  • Lee, Min-Hee;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1128-1133
    • /
    • 2008
  • Cellulose based electroactive paper(EAPap) has been developed as a new smart material due to its advantages of piezoelectricity, large displacement, low power consumption, low cost and flexibility. EAPap can be used for a surface acoustic wave (SAW) device using the piezoelectric property of EAPap, resulting in the cost effective and flexible SAW device. In this paper, inter digit transducer(IDT) structure using lift-off technique with a finger gap of 10mm was used for micro fabrication of the cellulose EAPap SAW devices. The performance of IDT patterned SAW device was characterized by a Network Analyzer. The feasibility of cellulose EAPap as a potential acoustic device was presented and explained.

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.