• Title/Summary/Keyword: piezoelectric transducer

Search Result 391, Processing Time 0.033 seconds

Characterization of Component Materials of the Ultrasonic Transducer (초음파 탐촉자 구성 재료의 특성 연구)

  • Kim, B.G.;Park, Y.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.69-76
    • /
    • 1989
  • Piezoelectric elements, backing and shoe material are the important components of the ultrasonic transducer. In this study, characteristic constants in the domestic and the foreign PZT ceramic elements are investigated, The acoustic properties of the domestic and the foreign backing and shoes are characterized. The effects of components characteristics, the kinds of the piezoelectric elements and the thickness of the wear plates are investigated for the manufactured normal beam ultrasonic transducers.

  • PDF

Fabrication and FEM Analysis of Wind-Mill Type Ultrasonic Motors using Piezoelectric Ceramics (압전 세라믹스를 이용한 풍차형 초음파모터의 제작과 유한요소해석)

  • 강형우;이상기;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.373-376
    • /
    • 2000
  • The modified Moonie(Cymbal) transducer has been investigated for an accelerometer application. This paper present a wind-mill type ultrasonic motors using ternary piezoelectric ceramics and aluminum endcaps applied by cymbal transducer. The maximum displacement was increased depend on applied voltage and layer number. The multi-layer was fabricated by tape casting using doctor-blade process. The maximum displacement of multi-layered ultrasonic motor was much higher than that of one-layered.

  • PDF

Development of a Piezoelectric Micro-machined Ultrasonic Transducer for Photoacoustic Imaging that Accounts for the Added Mass Effect of the Acoustic Medium (음향 매질의 추가질량 효과를 고려한 광음향 영상용 초소형 압전 기반 초음파 트랜스듀서의 개발)

  • Ahn, Hongmin;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Typically, photoacoustic images are obtained in water or gelatin because the impedance of these mediums is similar to that of the human body. However, these acoustic mediums can have an additional mass effect that changes the resonance frequency of the transducer. The acoustic radiation impedance in air is negligible because it is very small compared to that of the transducer. However, the high acoustic impedance of mediums such as the human body and water is quite large compared to that of air, making it difficult to ignore. Specifically, in a case where the equivalent mass is very small, such as with a micro-machined ultrasound transducer, the additional mass effects of the acoustic medium should be considered for an accurate resonance frequency design. In this study, a piezoelectric micro-machined ultrasonic transducer (pMUT) was designed to have a resonance frequency of 10 MHz in the acoustic medium of water, which has similar impedance as the human body. At that time, the resonance frequency of the pMUT in air was calculated at 15.2 MHz. When measuring the center displacement of the manufactured pMUT using a laser vibrometer, the resonance frequencies were measured as 14.3-15.1 MHz, which is consistent with the finite element method (FEM) simulation results. Finally, photoacoustic images of human hair samples were successfully obtained using the fabricated pMUT.

Design of Isolation-Type Matching Network for Underwater Acoustic Piezoelectric Transducer Using Chebyshev Filter Function (체비셰프 필터함수를 이용한 수중 음향 압전 트랜스듀서의 절연형 정합회로 설계)

  • Lee, Jeong-Min;Lee, Byung-Hwa;Baek, Kwang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.491-498
    • /
    • 2009
  • This paper presents the design method of an impedance matching network using an isolation transformer and the Chebyshev filter function for the high efficiency and the flat power driving of an underwater acoustic piezoelectric transducer. The proposed impedance matching network is designed for minimizing the reactance component of transducer and having the flat power response in the wide frequency range. We design a low pass filter with ladder-type circuit using the Chebyshev function as standard prototype filter function. In addition, we design the impedance matching network which is suitable for the equivalent circuit of transducer and the turn ratio of transformer through the bandpass frequency transformation. The proposed method is applied to the simulated dummy load of the tonpilz-type transducer operating in the middle frequency range. The simulation results are compared with the measured characteristics and the validity of the proposed method is verified.

Electric-Field-Induced Strain Measurement of Ferroelectric Ceramics Using a Linear Variable Differential Transducer (선형 가변 차동 변압기를 이용한 강유전 세라믹의 전기장 인가에 따른 변형 측정)

  • Hyoung-Su Han;Chang Won Ahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2024
  • The measurement of strain under an electric field has been widely employed to comprehend the fundamental principles of electro-mechanical responses in ferroelectric, piezoelectric, and electrostrictive materials. In particular, understanding the strain properties of piezoelectric materials in response to electrical stimulation is crucial for researching and developing components such as piezoelectric actuators, acoustic devices, and ultrasonic generators. This tutorial paper introduces the components and operational principles of the linear variable differential transducer (LVDT), a widely used displacement measurement device in various industries. Additionally, we present the configuration of an experimental setup using LVDT to measure the strain characteristics of ferroelectric, piezoelectric, or electrostrictive materials under the application of an electric field. This paper includes simple measurement results and analyses obtained through the LVDT experimental setup, providing valuable information on research methods for the electro-mechanical interactions of various materials.

Design and Fabrication of a 2D Array Ultrasonic Transducer (2D 배열형 초음파 트랜스듀서의 설계 및 제작)

  • Lee, Wonseok;Woo, Jeongdong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.393-401
    • /
    • 2013
  • In this paper, a $48{\times}64$ channel 2D array ultrasonic transducer with piezoelectric single crystals was designed, fabricated, and evaluated. Structure of the transducer was chosen to facilitate the electric connection on the planar array, and then components were fabricated in accordance with the structure. Detailed structure of the transducer was designed through finite element analyses. In order to improve the performance of the transducer, the crosstalk between adjacent elements was reduced through the control of kerf width and material, and the target frequency bandwidth was achieved through optimal design of the thickness of the single crystal and matching layers. After fabricating a prototype of the transducer according to the design and measuring its characteristics, the results were compared with those of finite element analyses to evaluate the performance of the developed transducer.

A Dual Mode Ultrasonic Transducer with a PZT Piezoelectric Seramics (PZT 압전 세라믹스를 사용한 2 중 모우드 초음파 변환기)

  • 김연보;노용래;남효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.1-4
    • /
    • 1995
  • The most of conventional ultrasonic transducers are constructed to generate either longitudinal or shear waves, but not both of them. We investigated the mechanism of dual mode transducers that generates both of the longitudinal and shear waves simultaneously with a single PZT element. The study has been aimed to find the desired cut by the examining the piezoelectric properties. Theory predicts that a mixed P/S mode transducer can be constructed using a related Z-cut of a PZT ceramics. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves equally strongly. The results are verified by checking the impedance variation of the element with Finite Element Methods, and chocking the wave form by pulse-echo test simulation. Based upon the theory a rotated Z-cut was prepared and a transducer were fabricated. Validity of the theory calculation is verified through the

  • PDF

Characteristics of a $PbTiO_{3}$ Transmitting/P(VDF-TrFE) Receiving Ultrasonic Transducer in VHF Band

  • Ha Kang-Lyeol;Kim Moo-Joon;Kim Jung-Ho;Kim Jung-Soon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.311-314
    • /
    • 2004
  • A new type of high frequency wideband ultrasonic transducer with a separation between a transmitter and a receiver was proposed and its characteristics were simulated using the PSpice model. The piezoelectric ceramic $PbTiO_{3}$ as a transmitter and the piezoelectric copolymer P(VDF-TrFE) as a receiver were used for high sensitivity and wide bandwidth, respectively. The characteristics of a center frequency approximately 40MHz focusing transducer fabricated in this study showed very wide bandwidth which could give an axial spatial resolution better than 30um in the B-mode image for biological tissues.

  • PDF

A Study of Frequency variable Ultrasonic Transducer for the Variation of Echo Characteristics in Reflecte Wave (반사파의 주파수 성분변화에 대응한 주파수 가변 초음파 트랜스듀서)

  • 김무준
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.40-43
    • /
    • 1997
  • It is known tat the echoes from the most objects differ from the incident pulses in amplitude and frequency .Especially, the frequency in echoes from moving target is shiftby the Doppler effect. it causes to reduce the receiving sensitivity of piezoelectric transducers that have definite band width. The electric impedance, whichis connected to the electrical terminals, notably changes the resonant frequency of a thickeness mode piezoelectric vibrator with high electromechanical doupling due to the electroelastic effect. Using this effect, we have developed a frequency controllable ultrasonic transducer which is mad eof multi-layered PZT disks to adjust to frequency shifted by Doppler effect. The characteristics of transducer can be obtained by using the equivalent circuit of transmission line model. It was confirmed experimentally that the center frequency and band width of the trasducer could be controlled by the conditions of the electrical terminals. These results coincided with theoretical results.

  • PDF