• Title/Summary/Keyword: piezoelectric signal

Search Result 228, Processing Time 0.024 seconds

Experimental Verification of Spectral Element Analysis for the High-frequency Dynamic Responses of a Beam with a Surface Bonded Piezoelectric Transducer (압전소자가 부착된 보의 고주파수 동적응답에 대한 스펙트럼 요소 해석의 실험적 검증)

  • Kim, Eun-Jin;Sohn, Hoon;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1347-1355
    • /
    • 2009
  • This paper demonstrates the validity of spectral element analysis for modeling the high-frequency dynamic behaviors of a beam with a surface-bonded piezoelectric wafer through a laboratory test. In the spectral element analysis, the high-frequency electro-mechanical interaction can be considered properly with relatively low computational cost compared to the finite element analysis. In the verification test, a cantilever beam with a surface-bonded piezoelectric wafer is forced to be in steady-state motion by exerting the harmonic driving voltage signal on the piezoelectric wafer. A laser scanning vibrometer is used to obtain the overall dynamic responses of the structure such as resonance frequencies, the associated mode shapes, and frequency response functions up to 20 kHz. Then, these dynamic responses from the test are compared to those computed by the spectral element analysis. A two-dimensional finite analysis is conducted to obtain the asymptotic solutions for the comparison purpose as well.

Designing Flexible Thin Film Audio Systems Utilizing Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.16-18
    • /
    • 2013
  • In this paper, we develop a method to design a flexible thin film audio systems utilizing Polyvinylidene fluoride. The system we designed showed the properties of increased transparency and sound pressure levels. As an input terminal transparent oxide thin film is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double -layered structure. In the range of visible light, the output from the output of the system showed an increased and improved sound pressure level. The piezoelectric polymer film of polyvinylidene fluoride (PVDF) is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

Signal Stabilization of Optical Fiber Acoustic Sensor Using a Cylindrical Piezoelectric Stretcher (원통형 압전신장기를 이용한 광섬유 음향센서의 신호안정화)

  • Lee, D.-H.;Jho, M.-J.;Suh, S.-J.;Eun, H.-J
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 1989
  • A Mach-Zehnder interferometer using single mode optical fiber was constructed which operates in homodyne detection scheme. Its response to air-borne soun pressure was examined experimentally. A signal stabilizer was developed for maintaining optical fiber interferometer in quadrature condition using a cylindrical piezoelectric stretcher. This maintains the optical fiber sensor at a maximum sensitivity in the presence of the phase drift caused by temperature fluctuation and other types of environmental disturbances.

  • PDF

A study on characteristics of piezo-buzzer for pressure sensor (압력센서용 압전부저의 특성에 관한 연구)

  • 신영록;김홍근;김철한;최헌일;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.985-988
    • /
    • 2001
  • A piezo-buzzer being used for the purpose of generation of audible frequency, which is a electric-acoustic transducer utilizing the inverse piezoelectric effect. Also it can be used for a pressure sensor according to the piezoelectric effect. But the output of a piezo-buzzer is a differential signal. In this study, we've made a system that can measure a real pressure by integration of output signal. According to our results, it could be found a possibility of application for pressure sensor by measurement of output characteristics when a piezo-buzzer was pressurized and depressurized, and by measuring of an error by means of the drift current of OP-Amp, etc..

  • PDF

Development of an Impedance Matching Layer in an Ultrasound Transducer with Gradient Properties

  • Jeong, Jihoon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.374-379
    • /
    • 2018
  • The piezocomposite transducer is widely used because it is highly efficient in transforming electric energy into mechanical energy, and its frequency range is broader than that of other types of ultrasound transducers. A general piezocomposite transducer is composed of an acoustic lens, impedance matching layers, piezoelectric materials, and backing layers. When an input voltage is applied to a piezoelectric material as an active material, it generates sound waves while vibrating. At that time, an impedance matching layer helps the sound waves to propagate forward while reducing the impedance mismatch that may occur at the interface between the active material and its front material. The impedance mismatch has a negative effect on the signal of an ultrasound transducer; thus, it is important to design a matching layer to overcome the issue. In this study, an optimized feature of a matching layer with gradient properties is studied. An objective function is defined to minimize both the average and the deviation of the reflection coefficients that are functions of the frequencies. As a result, an improvement in the signal characteristics with respect to the sensitivity and bandwidth is reported.

Study on Piezoelectric Characteristics of Piezoelectric Paint Sensor According to Poling Time (분극 시간에 따른 압전 페인트 센서의 압전 특성 연구)

  • Han, Dae-Hyun;Park, Seung-Bok;Kang, Lae-Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1069-1074
    • /
    • 2014
  • In this study, the piezoelectric characteristics of a piezoelectric paint sensor were investigated in relation to the poling time. This piezoelectric paint sensor was composed of PNN-PZT powder and epoxy resin with a 1:1 weight ratio. The dimensions of the paint specimen were $40{\times}10{\times}1mm^3$, and the top and bottom sides were both coated with a silver paste to create electrodes. During the poling treatment, the poling time was controlled to examine the effect of the piezoelectric properties, while the poling temperature was fixed at room temperature and the electric field was set to 4 kV/mm. The piezoelectric properties were measured by comparing the output voltage from the paint sensor to the force signal from an impact hammer when the impact hammer hit the specimen. In conclusion, the optimal poling conditions were found to be an electric field of 4 kV/mm and a poling time of around 30 min at room temperature.

Impact Localization Using Piezoelectric Paint Sensor with Mosaic Pattern Electrodes (모자이크 패턴 전극 압전 페인트 센서를 이용한 충격 위치 검출)

  • Kang, Sang-Hyeon;Kang, Lae-Hyong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2019
  • To detect the impact location of a structure, the authors' group conducted a study on piezoelectric paint sensor. The piezoelectric paint sensors are used for impact detection due to their inherent characteristics: sensitivity to high-frequency signal and impact. Additionally, the paint sensor can be applied on curved and complex structures where ceramic sensor would not be applicable. Moreover it is a self-powered sensor therefore no need for an external power source. For impact localization, mosaic pattern electrodes were coated on the specimen and the impact signal obtained from any part of the electrode where the impact occurred. If we more precise impact localization is required, the electrodes should be divided into more parts and impact data acquisition conducted in all the points of the electrode. In this paper, we developed a light, cheap and simple multi-channel data acquisition system to aid in data gathering. In total four channels data acquisition have been tested using the ARM Cortex-M3.

Finite Element Analysis for Acoustic Characteristics of Piezoelectric Underwater Acoustic Sensors (압전 수중음향센서 음향특성의 유한요소해석)

  • 김재환;손선봉;조철희;조치영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • Sonar is the system that detects objects and finds their location in water by using the echo ranging technique. In order to have excellent performance in variable environment, acoustic characteristics of this system must be analyzed accurately. In this paper, based on the finite element analysis, modeling and analysis of acoustic characteristics of underwater acoustic sensors are preformed. Couplings between piezoelectric and elastic materials, and fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Eave Envelop Element) is adopted to take into account the infinite domain. When an incidence wave excites the surface of Tonpilz underwater acoustic sensor, the scattered wave on the sensor is founded by satisfying the radiation condition at the artificial boundary approximately. Based on this scattering analysis, the electrical response of the underwater acoustic sensor under incidence, so called RVS (Receiving Voltage Signal) is founded accurately. This will devote to design Sonar systems accurately.

  • PDF

A Study On The Classification Of Driver's Sleep State While Driving Through BCG Signal Optimization (BCG 신호 최적화를 통한 주행중 운전자 수면 상태 분류에 관한 연구)

  • Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.905-910
    • /
    • 2022
  • Drowsy driving requires a lot of social attention because it increases the incidence of traffic accidents and leads to fatal accidents. The number of accidents caused by drowsy driving is increasing every year. Therefore, in order to solve this problem all over the world, research for measuring various biosignals is being conducted. Among them, this paper focuses on non-contact biosignal analysis. Various noises such as engine, tire, and body vibrations are generated in a running vehicle. To measure the driver's heart rate and respiration rate in a driving vehicle with a piezoelectric sensor, a sensor plate that can cushion vehicle vibrations was designed and noise generated from the vehicle was reduced. In addition, we developed a system for classifying whether the driver is sleeping or not by extracting the model using the CNN-LSTM ensemble learning technique based on the signal of the piezoelectric sensor. In order to learn the sleep state, the subject's biosignals were acquired every 30 seconds, and 797 pieces of data were comparatively analyzed.

Development of Tactile Sensor for Detecting Contact Force and Slip (접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발)

  • Choi Byung-June;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.