• Title/Summary/Keyword: piezoelectric sensors

Search Result 391, Processing Time 0.024 seconds

One-Dimensional Modeling For Nonlinear Behavior of Ferroelectric Materials (강유전체의 비선형 거동에 대한 1차원 모델링)

  • Kim, Sang-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1378-1383
    • /
    • 2003
  • A ferroelectric (called piezoelectric afterwards) wafer has been widely used as a key component of actuators or sensors of a layer type. According to recent researches, the piezoelectric wafer behaves in a nonlinear way under excessive electro-mechanical loadings. In the present paper, one-dimensional constitutive equations for the nonlinear behavior of a piezoelectric wafer are proposed based on the principles of thermodynamics and a simple viscoplasticity theory. The predictions of the developed model are compared with experimental observations.

  • PDF

Piezoelectric Nanogenerators: Energy Harvesting Technology (압전 나노발전기: 에너지 수확 기술)

  • Shin, Dong-Myeong;Hwang, Yoon-Hwae
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.17-20
    • /
    • 2016
  • Piezoelectric nanogenerators are energy harvesting device to convert a mechanical energy into an electric energy using nanostructured piezoelectric materials. This review summarizes works to date on piezoelectric nanogenerators, starting with a basic theory of piezoelectricity and working mechanism, and moving through the reports of numerous nanogenerators using nanorod arrays, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power supplies or strain sensors of highly integratedl nano devices. Further development of nanogenerators holds promise for the development of self-powered implantable and wearable electronics.

Broadband Piezoelectric Energy Harvesting Technology (광대역 압전 에너지 하베스팅 기술)

  • Lee, Dong-Gyu;Yee, Yeon-Jeong;Song, Hyun-Cheol
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.56-69
    • /
    • 2019
  • Recent advances in low-power sensors and transmitters are driving the search for standalone power sources that utilize unused ambient energy. These energy harvesters can alleviate the issues related to the installation and maintenance of sensors. Particularly piezoelectric energy harvesters, with the ability to convert ambient mechanical energy into useful electricity, have received significant attention due to their high energy density, low cost and operational stability over wide temperature and pressure conditions. In order to maximize the generated electrical power, the natural frequency of the piezoelectric energy harvester should be matched with the dominant frequency of ambient vibrations. However, piezoelectric energy harvesters typically exhibit a narrow bandwidth, thus, it becomes difficult to operate near resonance under broadband ambient vibration conditions. Therefore, the resonating of energy harvesters is critical to generate maximum output power under ambient vibration conditions. For this, energy harvesters should have broadband natural frequency or actively tunable natural frequency with ambient vibrations. Here, we review the most plausible broadband energy harvesting techniques of the multi-resonance, nonlinearity, and self-resonance tuning. The operation mechanisms and recent representative studies of each technique are introduced and the advantages and disadvantages of each method are discussed. In addition, we look into the future research direction for the broadband energy harvester.

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.

Study of Mechanical Modeling of Oval-shaped Piezoelectric Energy Harvester (타원형 압전 에너지 하베스터의 기계적 모델링 연구)

  • Choi, Jaehoon;Jung, Inki;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.36-40
    • /
    • 2019
  • Energy harvesting is an advantageous technology for wireless sensor networks (WSNs) that dispenses with the need for periodic replacement of batteries. WSNs are composed of numerous sensors for the collection of data and communication; hence, they are important in the Internet of Things (IoT). However, due to low power generation and energy conversion efficiency, harvesting technologies have so far been utilized in limited applications. In this study, a piezoelectric energy harvester was modeled in a vibration environment. This harvester has an oval-shaped configuration as compared to the conventional cantilever-type piezoelectric energy harvester. An analytical model based on an equivalent circuit was developed to appraise the advantages of the oval-shaped piezoelectric energy harvester in which several structural parameters were optimized for higher output performance in given vibration environments. As a result, an oval-shaped energy harvester with an average output power of 2.58 mW at 0.5 g and 60 Hz vibration conditions was developed. These technical approaches provided an opportunity to appreciate the significance of autonomous sensor networks.

Performance Prediction of Vibration Energy Harvester considering the Dynamic Characteristics of Rotating Tires (회전하는 타이어의 동특성을 고려한 진동에너지 하베스터 성능 예측)

  • Na, Hae-Joong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.87-97
    • /
    • 2020
  • In general, tires require various sensors and power supply devices, such as batteries, to obtain information such as pressure, temperature, acceleration, and the friction coefficient between the tire and the road in real time. However, these sensors have a size limitation because they are mounted on a tire, and their batteries have limited usability due to short replacement cycles, leading to additional replacement costs. Therefore, vibration energy harvesting technology, which converts the dynamic strain energy generated from the tire into electrical energy and then stores the energy in a power supply, is advantageous. In this study, the output voltage and power generated from piezoelectric elements are predicted through finite element analysis under static state and transient state conditions, taking into account the dynamic characteristics of tires. First, the tire and piezoelectric elements are created as a finite element model and then the natural frequency and mode shapes are identified through modal analysis. Next, in the static state, with the piezoelectric element attached to the inside of the tire, the voltage distribution at the contact surface between the tire and the road is examined. Lastly, in the transient state, with the tire rotating at the speeds of 30 km/h and 50 km/h, the output voltage and power characteristics of the piezoelectric elements attached to four locations inside the tire are evaluated.

A new piezoelectric shell element and its application in static shape control

  • Chen, Su Huan;Yao, Guo Feng;Lian, Hua Dong
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.491-506
    • /
    • 2001
  • In this paper, a new three-dimensional piezoelectric thin shell element containing an integrated distributed piezoelectric sensor and actuator is proposed. The distributed piezoelectric sensor layer monitors the structural shape deformation due to the direct effect and the distributed actuator layer suppresses the deflection via the converse piezoelectric effect. A finite element formulation is presented for static response of laminated shell with piezoelectric sensors/actuators. An eight-node and forty-DOF shell element is built. The performance of the shell elements is improved by reduced integration technique. The static shape control of structure is derived. The shell element is verified by calculating piezoelectric polymeric PVDF bimorph beam. The results agreed with those obtained by theoretical analysis, Tzou and Tseng (1990) and Hwang and Park (1993) fairly well. At last, the static shape control of a paraboloidal antenna is presented.

Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)

  • Karayannis, Chris G.;Voutetaki, Maristella E.;Chalioris, Constantin E.;Providakis, Costas P.;Angeli, Georgia M.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.997-1018
    • /
    • 2015
  • Structural health monitoring along with damage detection and assessment of its severity level in non-accessible reinforced concrete members using piezoelectric materials becomes essential since engineers often face the problem of detecting hidden damage. In this study, the potential of the detection of flexural damage state in the lower part of the mid-span area of a simply supported reinforced concrete beam using piezoelectric sensors is analytically investigated. Two common severity levels of flexural damage are examined: (i) cracking of concrete that extends from the external lower fiber of concrete up to the steel reinforcement and (ii) yielding of reinforcing bars that occurs for higher levels of bending moment and after the flexural cracking. The purpose of this investigation is to apply finite element modeling using admittance based signature data to analyze its accuracy and to check the potential use of this technique to monitor structural damage in real-time. It has been indicated that damage detection capability greatly depends on the frequency selection rather than on the level of the harmonic excitation loading. This way, the excitation loading sequence can have a level low enough that the technique may be considered as applicable and effective for real structures. Further, it is concluded that the closest applied piezoelectric sensor to the flexural damage demonstrates higher overall sensitivity to structural damage in the entire frequency band for both damage states with respect to the other used sensors. However, the observed sensitivity of the other sensors becomes comparatively high in the peak values of the root mean square deviation index.

System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method (Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석)

  • Yoon, Heonjun;Youn, Byeng D.;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.