• 제목/요약/키워드: piezoelectric plates

검색결과 120건 처리시간 0.021초

Techniques For Control Acoustic Response of Corner-Pinned Rectangular Plate Using Piezo-electric Actuator

  • Jung, Do-Hee;Kim, Woo-Young;Lee, Sang-Kee;Park, Seen-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권2호
    • /
    • pp.79-87
    • /
    • 2003
  • Acoustic response control of a comer-pinned plate using piezoelectric wafers was studied, both theoretically and experimentally. Three different sizes of aluminum alloy plates were used and available ball joints were employed to hold the plate at the four comers. The plate with the largest aspect ratio showed the largest and most clear responses to the acoustic excitation in the range of frequencies (0~200Hz), and sound pressure levels (80~100dB) as predicted. The reduction of the acoustic response of the plate by piezoelectric actuator was very significant, more than expected, but abatement of the sound transmission through the plate was only slightly altered by the piezoelectric actuator. This work is an original work extending earlier work with doors excited by acoustic fields. The important difference is the used of ball joints to simulate the joints.

공진분기회로를 이용한 평판의 진동제어 (Vibration Control of Plates Using Resonant Shunted Piezoelectric Material)

  • 김영호;박철휴;박현철
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1778-1784
    • /
    • 2003
  • Vibration control of plates with a passive electrical damper is presented in this paper. This electrical absorber, piezoelectric patches connected with a resistor and an inductor in series, is analogous to the damped mechanical vibration absorber. For estimating the effectiveness of piezoelectric absorber, the governing equations of motion are derived using a classical laminate plate theory and Hamilton principle. The developed theoretical analysis is validated experimentally for a simply-supported aluminum plate in order to demonstrate the performance of passive electrical damper. The result shows that the vibration amplitude is reduced about 14dB for the targeted first vibration mode.

압전소자를 이용한 음향 진동 박판에 대한 제어 기법 (Reduction Method of Acoustic Vibrating Plate Using Piezo Electric Material)

  • Dohee, Jung;SeeBok, Park;Wooyoung, Kim
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.421-428
    • /
    • 2004
  • Acoustic response control of a corner-pinned plate using piezoelectric wafers was studied, both theoretically and experimentally. Three different sizes of aluminum alloy plates were used and available ball joints were employed to hold the plate at the four corners. The plate with the largest aspect ratio showed the largest and most clear responses to the acoustic excitation in the range of frequencies (0~200Hz), and sound pressure levels (80~100dB) as predicted. The reduction of the acoustic response of the plate by piezoelectric actuator was very significant, more than expected, but abatement of the sound transmission through the plate was only slightly altered by the piezoelectric actuator. This work is an original work extending earlier work with doors excited by acoustic fields. The important difference is the used of ball joints to simulate the joints.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

압전 소자를 이용한 항공기용 사각박판에 대한 음향 반응제어 (Control of Acoustic Response of A/C Rectangular Plate Using Piezo Electric Material)

  • 정도희;박신옥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.633-636
    • /
    • 2004
  • Acoustic response control of a corner-pinned plate using piezoelectric wafers was studied, both theoretically and experimentally. Three different sizes of aluminum alloy plates were used and available ball joints were employed to hold the plate at the four comers. The plate with the largest aspect ratio showed the largest and most clear responses to the acoustic excitation in the range of frequencies $(0\sim200Hz)$, and sound pressure levels $(80\sim100dB)$ as predicted. The reduction of the acoustic response of the plate by piezoelectric actuator was very significant, more than expected, but abatement of the sound transmission through the plate was only slightly altered by the piezoelectric actuator. This work is an original work extending earlier work with doors excited by acoustic fields. The important difference is the used of ball joints to simulate the joints.

  • PDF

Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric

  • Mokhtar Ellali;Khaled Amara;Mokhtar Bouazza
    • Coupled systems mechanics
    • /
    • 제13권2호
    • /
    • pp.171-186
    • /
    • 2024
  • In the present paper, thermal buckling characteristics of functionally graded rectangular plates made of porous material that are integrated with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and constant applied actuator voltage are investigated by utilizing a Navier solution method. The uniform temperature rise loading is considered. Thermomechanical material properties of FGM plates are assumed to be temperature independent and supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM) which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. The governing differential equations of stability for the piezoelectric FGM plate are derived based on higher order shear deformation plate theory. Influences of several important parameters on the critical thermal buckling temperature are investigated and discussed in detail.

압전 수정진동자의 설계민감도 해석과 위상 최적설계 (Design Sensitivity Analysis and Topology Optimization of Piezoelectric Crystal Resonators)

  • 하윤도;조선호;정상섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 2005
  • Using higher order Mindlin plates and piezoelectric materials, eigenvalue problems are considered. Since piezoelectric crystal resonators produce a proper amount of electric signal for a thickness-shear frequency, the objective is to decouple the thickness-shear mode from the others. Design variables are the bulk material densities corresponding to the mass of masking plates for electrodes. The design sensitivity expressions for the thickness-shear frequency and mode shape vector are derived using direct differentiation method(DDM). Using the developed design sensitivity analysis (DSA) method, we formulate a topology optimization problem whose objective function is to maximize the thickness-shear component of strain energy density at the thickness-shear mode. Constraints are the allowable volume and area of masking plate. Numerical examples show that the optimal design yields an improved mode shape and thickness-shear energy.

  • PDF

열-전기-기계 하중을 받는 스마트 복합재 평판의 고차 지그재그 유한요소의 개발 및 성능 평가 (Development and Assessment of Higher Order Zig-zag Theory for smart composite plates under mechanical, thermal, and electric loads)

  • 오진호;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.191-194
    • /
    • 2001
  • A partially coupled thermo-piezoelectric-mechanical triangular finite element model of composite laminates with surface bonded piezoelectric actuators, subjected to externally applied mechanical load, temperature change load, electric field load is developed. The governing differential equations are obtained by applying the principle of free energy and variational techniques. A higher order zigzag theory displacement field is employed to accurately capture the transverse shear and normal effects in laminated composite plates of arbitrary thickness. Nonconforming shape functions by Specht are employed in the transverse displacement variables. Numerical examples demonstrate the accuracy and efficiency of the proposed triangular plate element.

  • PDF

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.