• Title/Summary/Keyword: piezoelectric force sensor

Search Result 86, Processing Time 0.018 seconds

Damage Estimation of Cables using PZT (압전소자를 이용한 케이블의 손상평가)

  • Park, Kang-Geun;Kim, Ie-Sung;Kim, Wha-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.235-239
    • /
    • 2008
  • Cable systems are a construction of elements carrying only tension and no compression or bending in membrane structure. Tensile membrane structures are most often used as roofs as they can economically and attractively span large distances. But cable systems have weaknesses to vibration by earthquake, wind and vehicle loads. Damage detection of cable systems by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. If cable snaps are occurred to cable release and tear in tension structures, these are set up a vibration. So, we used piezo-electric materials, and The principle of operation of a piezoelectric sensor is that a physical dimension, transformed into a force, acts on two opposing faces of the sensing element. In this study, the development on test method of cable system is proposed and tested by tensile strength using piezo-electric materials.

  • PDF

Active Vibration Control of UAV EO/IR Sensor Mount Using Piezoelectric Actuator (압전작동기를 이용한 무인항공기 EO/IR 센서 마운트의 능동 진동 제어)

  • Park, Dong-Hyun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1278-1285
    • /
    • 2008
  • This paper presents an inertia type of piezostack based active mount fur unmanned aero vehicle (UAV) camera system. After identifying the stiffness and damping properties of the rubber element and piezostack a mechanical model of the active mount system is established. The governing equation of mount is then derived and expressed in a state space form. Subsequently, a sliding mode controller which is robust to uncertain parameters is designed in order to reduce the vibration imposed according to the military specification associated with UAV camera mount system operation. Control performances such as acceleration and transmitted force are evaluated through both computer simulation and experimental implementation.

Overview of flexure-based compliant microgrippers

  • Aia, Wenji;Xu, Qingsong
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Microgripper is an essential device in the micro-operation system. It can convert other types of energy into mechanical energy and produce clamp movement with required chucking force, which enables it a broad application prospect in the domain of tiny components' processing and assembly, biomedicine and optics, etc. The performance of a microgripper is dependent on its power supply, type of drive, mechanism structure, sensing components, and controller. This paper presents a state-of-the-art survey of recent development on flexure-based microgrippers. According to the drive type, the existing microgrippers can be mainly classified as electrostatic microgripper, electrothermal microgripper, electromagnetic microgripper, piezoelectric microgripper, and shape memory alloy microgripper. Additionally, some different mechanisms, sensors, and control methods that are used in microgripper system are reviewed. The key issue of how to choose those components in microgripper system design is also addressed.

Manufacturing Method for Sensor-Structure Integrated Composite Structure (센서-구조 일체형 복합재료 구조물 제작 방법)

  • Han, Dae-Hyun;Kang, Lae-Hyong;Thayer, Jordan;Farrar, Charles
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.155-161
    • /
    • 2015
  • A composite structure was fabricated with embedded impact detection capabilities for applications in Structural Health Monitoring (SHM). By embedding sensor functionality in the composite, the structure can successfully perform impact localization in real time. Smart resin, composed of $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,\;Ti)O_2$ (PNN-PZT) powder and epoxy resin with 1:30 wt%, was used instead of conventional epoxy resin in order to activate the sensor function in the composite structure. The embedded impact sensor in the composite was fabricated using Hand Lay-up and Vacuum Assisted Resin Transfer Molding(VARTM) methods to inject the smart resin into the glass-fiber fabric. The electrodes were fabricated using silver paste on both the upper and bottom sides of the specimen, then poling treatment was conducted to activate the sensor function using a high voltage amplifier at 4 kV/mm for 30 min at room temperature. The composite's piezoelectric sensitivity was measured to be 35.13 mV/N by comparing the impact force signals from an impact hammer with the corresponding output voltage from the sensor. Because impact sensor functionality was successfully embedded in the composite structure, various applications of this technique in the SHM industry are anticipated. In particular, impact localization on large-scale composite structures with complex geometries is feasible using this composite embedded impact sensor.

Experience with an On-board Weighing System Solution for Heavy Vehicles

  • Radoicic, Goran;Jovanovic, Miomir;Arsic, Miodrag
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.787-797
    • /
    • 2016
  • Mining, construction, and other special vehicles for heavy use are designed to work under high-performance and off-road working conditions. The driving and executive mechanisms of the support structures and superstructures of these vehicles frequently operate under high loads. Such high loads place the equipment under constant risk of an accident and can jeopardize the dynamic stability of the machinery. An experimental investigation was conducted on a refuse collection vehicle. The aim of this research was to determine the working conditions of a real vehicle: the kinematics of the waste container, that is, a hydraulic rotate drum for waste collection; the dynamics of the load manipulator (superstructure); the vibrations of the vehicle mass; and the strain (stress) of the elements responsible for the supporting structure. For an examination of the force (weight) on the rear axle of a heavy vehicle, caused by its own weight and additional load, a universal measurement system is proposed. As a result of this investigation, we propose an alternative system for continuous vehicle weighing during waste collection while in motion, that is, an on-board weighing system, and provide suggestions for measuring equipment designs.

Effect of Isotropic Strain on Properties of Amorphous Magnetic films (아몰퍼스자성박막의 특성에 미치는 등방성 스트레인의 영향)

  • 신광호;김흥근;김영학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.478-480
    • /
    • 2001
  • Fe-base amorphous films exhibit large saturation magnetostriction and soft magnetic Properties, which make them suitable for strain sensor applications. Most important material properties for the performance of these elements are the superior soft magnetic properties, such as high permeability and small coercive force, as well as magnetoelastic properties. It is well known that the strain generated in film deposition and/or post-heat treatment processes is one of important material properties, which effects on the soft magnetic properties of the film via magnetoelastic coupling. In this study, the effect of an isotropic strain in plane of magnetic films have been performed experimently. Amorphous films with the composition of (F $e_{90}$ $Co_{10}$)$_{78}$S $i_{l2}$ $B_{10}$ were employed in this study. The film with 5${\mu}{\textrm}{m}$ thick was deposed onto the polyimide substrate with 50${\mu}{\textrm}{m}$ thick by virtue of RF sputtering. The film was subject to post annealing with a static magnetic field with 500Oe magnetic field intensity at 35$0^{\circ}C$ for 1 hour. The polyimide substrate with the film was bonded with an adhesive on PZT piezoelectric substrate with 600${\mu}{\textrm}{m}$ thick in applying voltage of 500V. The change in MH loops of films due to the isotropic strain was measured by using VSM. The coercive force was evaluated from MH loops. It has shown in the results that M-H loops of films are subject to change considerably with a dc voltage, resulting of the magnetization rotation from normal to plane direction as the applied voltage is changed from 500V to 250V.50V.V.

  • PDF