• 제목/요약/키워드: piezoceramics

검색결과 67건 처리시간 0.022초

광대역 수중 스피커 시스템의 설계 및 성능 특성 (Design and Performance Characteristics of a Broadband Underwater Speaker System)

  • 이대재
    • 한국수산과학회지
    • /
    • 제44권5호
    • /
    • pp.543-549
    • /
    • 2011
  • An underwater speaker was developed for use as an acoustic deterrent device that transmits acoustic energy through the water omnidirectionally over a broadband frequency range to eliminate marine mammal attacks and to prevent physical damage to the inshore and coastal fishing grounds of Korea. The underwater speaker was constructed of two vibration caps machined from 6061-T6 aluminum alloy and a stack of PZ 26 piezoelectric ceramic rings (Ferroperm Piezoceramics A/S) connected mechanically in series and electrically in parallel. The performance characteristics of the underwater speaker were measured and analyzed in an experimental water tank of $5\;m{\times}5\;m{\times}6\;m$. The peak transmitting voltage response (TVR) was measured at 11.16 kHz with 163.45 dB re $1\;{\mu}Pa$/V at 1m. The underwater speaker showed a near omnidirectional beam pattern at the peak TVR resonance frequency. The usable frequency range was 4-25 kHz with a lower TVR limit of approximately 140 dB. We conclude that this underwater speaker could be satisfactorily used as an acoustic deterrent device against marine mammals, particularly the bottlenose dolphin, to protect catches and fishing grounds as well as the mammals themselves, for example, by keeping them away from fishing gear and/or vessels.

압전세라믹 PZT-고분자 1-3-0형 복합압전체의 제조 및 전기적 특성 (Fabrication and Electrical Properties of Piezoceramics PZT-Polymer 1-3-0 Type Composite)

  • 손무헌;최헌일;사공건
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권4호
    • /
    • pp.241-246
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powders were synthesized by Wet-Dry combination method. And the flexible 1-3-0 type composites were favricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. Dielectric constant of 1-3-0 type composites was lower than that of single phase PZT ceramics. Thickness mode coupling factor $k_t$ which was comparable with single phase PZT ceramics, and Mechanical Quality factor $Q_m$ were about 0.65 and 6 respectively. These composites are considered as a good candidates for broad-band type transducer applications. The acoustic impedance for 1-3-0 type composites was lower than that of single phase PZT ceramics. Therefore, these composites would be better used for hydrophone applications.

  • PDF

Stress and Electric Potential Fields in Piezoelectric Smart Spheres

  • Ghorbanpour, A.;Golabi, S.;Saadatfar, M.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1920-1933
    • /
    • 2006
  • Piezoelectric materials produce an electric field by deformation, and deform when subjected to an electric field. The coupling nature of piezoelectric materials has acquired wide applications in electric-mechanical and electric devices, including electric-mechanical actuators, sensors and structures. In this paper, a hollow sphere composed of a radially polarized spherically anisotropic piezoelectric material, e.g., PZT_5 or (Pb) (CoW) $TiO_3$ under internal or external uniform pressure and a constant potential difference between its inner and outer surfaces or combination of these loadings has been studied. Electrodes attached to the inner and outer surfaces of the sphere induce the potential difference. The governing equilibrium equations in radially polarized form are shown to reduce to a coupled system of second-order ordinary differential equations for the radial displacement and electric potential field. These differential equations are solved analytically for seven different sets of boundary conditions. The stress and the electric potential distributions in the sphere are discussed in detail for two piezoceramics, namely PZT _5 and (Pb) (CoW) $TiO_3$. It is shown that the hoop stresses in hollow sphere composed of these materials can be made virtually uniform across the thickness of the sphere by applying an appropriate set of boundary conditions.

혼합공정의 용매가 (Na,K)NbO3 압전체의 미세구조 및 전기적 특성에 미치는 영향 (Microstructures and Electrical Properties of (Na,K)NbO3 Piezoceramics with Various Solvents at Milling Process)

  • 임주희;이광수;류성림;권순용
    • 한국전기전자재료학회논문지
    • /
    • 제28권1호
    • /
    • pp.12-16
    • /
    • 2015
  • $(Na,K)NbO_3$-based piezoelectric ceramics were synthesized by a solid phase sintering method with various milling solvents. The solvents were varied with acetone, ethanol, and pure water to investigate the effect on the microstructure and electrical properties. NKN ceramics showed the maximum values of the relative density (94%), the mechanical quality factor (Qm: 78) and the electro-mechanical coupling factor ($k_p$: 0.25) at the ethanol solvent. It might mean that a solid phase sintering of the NKN piezoelectrics with a suitable solvent could improve the relative density and the piezoelectric properties.

Langmuir-Blodgett(LB) 유기 초박막의 전기적 특성에 관한 연구 (Electrical Properties of Langmuir-Blodgett(LB) Organic Ultrathin Films)

  • 이호식;이승엽;이원재;김태완;강도열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1330-1332
    • /
    • 1997
  • In this paper, PNN-PZN-PZT ceramics were fabricated with various mole ratio of the PZT[$Pb(Zr_{1/2}Tid_{1/2})O_3$]. PNN [$Pb(Ni_{1/3}Nb_{2/3})O_3$] and PZN[$Pb(Ni_{1/3}Nb_{2/3})O_3$ powders prepared by double calcination and PZT powders prepared by molten-salt synthesis method. The formation rate of perovskite phase in PNN-PZN-PZT ceramics could be obtained about 92% at PZT 0.3 mole ratio. The relative permittivity of specimen with PZT 0.3 mole ratio was shown 5,320 and appeared the relaxor ferroelectric feature. The maximum piezoelectric coefficient $d_{31}$ to be used for evaluation the displacement of piezoceramics in PNN-PZN-PZT ceramics was $324{\times}10^{-12}$(C/V) at the vicinity of morphotropic phase boundary and was larger than that of solid PZT ceramics($120{\times}10^{-12}C/V$).

  • PDF

PZT-고분자 3-3형 복합압전체 소자로 제작된 초음파 트랜스듀서의 펄스에코 응답특성 (Pulse-echo response of ultrasonic transducer fabricated with PZT-polymer 3-3 type composite)

  • 박정학;최헌일;손무현;사공건
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권10호
    • /
    • pp.1053-1059
    • /
    • 1996
  • The pulse-echo response of the piezoceramics PZT-polymer 3-3 type composite transducers with various PVA additions were investigated. The PZT powder was prepared by the molten salt synthesis method. The porous PZT specimens will be used as a filler to make 3-3 type comosite were prepared from a mixture of PZT and polyvinylalcohol(PVA) sphere by utilizing BURPS(Bumout Plastic Sphere) technique. It was shown that the transmitting and receiving sensitivity of 3-3 type piezoelectric composite transducers could be improved than that of solid PZT transducers. The reason is that 3-3 type piezoelectric composite have low dielectric constant, density and acoustic impedance. The distance between transducer and reflector was in good agreement with the distance calculated from the longitudinal velocity of the specimens and receiving time observed pulse-echo responses on the ultrasonic transducer analyzer.

  • PDF

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

복합재료 지능구조물의 제어를 위한 압전소자를 이용한 변형형상예측 (Shape Estimation for the Control of Composite Smart Sstructure Using Piezoceramics)

  • 하성규;조영수
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1133-1145
    • /
    • 1996
  • A method is proposed to predict the deformed shape of the structure subjected to the unknown external loads using the signal from the piezoceramic sensors. Such a shape estimation is based on the linear relationship between the deformation of structure and the signal from sensor, which is calculated using finite element method. The deformed shape is, then calculated using the linear matrix and the signals from the piezoceramic sensors attached to the structures. For the purpose, a structural analysis program is developed using a multi-layerd finite element of 8 nodes with 3 displacement and one voltage degrees of freedom at each node. The multiple layers with the different material properties can be layered within the element. The incompatible mode with the element is found to be crucial to catch the bending behavior accurately. The accuracy of the program is, then, verified by being compared with the experimental results performed by Crawley. The proposed shape estimation method is also verified for the different loads and sensor size. It is shown that the results of shape estimation method using the linear matrix well predicts the deflections compared with those of finite element method.

Damage detction and characterization using EMI technique under varying axial load

  • Lim, Yee Yan;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • 제11권4호
    • /
    • pp.349-364
    • /
    • 2013
  • Recently, researchers in the field of structural health monitoring (SHM) have been rigorously striving to replace the conventional NDE techniques with the smart material based SHM techniques, employing smart materials such as piezoelectric materials. For instance, the electromechanical impedance (EMI) technique employing piezo-impedance (lead zirconate titanate, PZT) transducer is known for its sensitivity in detecting local damage. For practical applications, various external factors such as fluctuations of temperature and loading, affecting the effectiveness of the EMI technique ought to be understood and compensated. This paper aims at investigating the damage monitoring capability of EMI technique in the presence of axial stress with fixed boundary condition. A compensation technique using effective frequency shift (EFS) by cross-correlation analysis was incorporated to compensate the effect of loading and boundary stiffening. Experimental tests were conducted by inducing damages on lab-sized aluminium beams in the presence of tensile and compressive forces. Two types of damages, crack propagation and bolts loosening were simulated. With EFS for compensation, both cross-correlation coefficient (CC) index and reduction in peak frequency were found to be efficient in characterizing damages in the presence of varying axial loading.

Actuator용 전왜재료의 특성개선을 위한 압전재료의 첨가효과 (The Effect of Piezoelectric Ceramic for Properties Improvement at Electrostriction Ceramic)

  • 이수호;조현철;김한근;손무현;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.206-210
    • /
    • 1997
  • In the fields of the optics, precise machine, semiconductors, the micro-positioning actuators are required for the control of position in the submicron range. PNN-P2N-PZT ceramics were fabricated with various mole ratio of the PZT[Pb(Zr$_{1}$2//Ti$_{1}$2)O$_3$]. PNN (Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$]and PZN[Pb(Zn$_{1}$3//Nb/sbu 2/3/)O$_3$] powders prepared by double calcination and PZT powders prepared by molten- salt synthesis method. The relative permittivity of specimen with PZT 0.3 mole ratio was shown 5,320 and appeared the relaxor ferroelectric feature. The maximum Piezoelectric coefficient d$_{31}$ to be used for evaluation the displacement of piezoceramics in PNN-PZN-PZT ceramics was 324$\times$10$^{-12}$ (C/V) at the vicinity of morphotropic phase boundary and was larger than that of solid PZT ceramics(120$\times$10$^{-12}$ C/V).

  • PDF