• 제목/요약/키워드: piezoceramic sensors

검색결과 51건 처리시간 0.02초

평판에서의 방사소음 저감을 위한 능동구조음향제어 (Active Structural Acoustic Control for Radiated Sound Reduction in Plate)

  • 홍진석;오재응;이유엽;신준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.608-612
    • /
    • 2000
  • Active control of sound radiation(using active structural acoustic control) from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Control structural input are achieved by two piezoceramic actuators bonded to the surface of the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The control approach are based on a multi-channel filtered-x LMS algorithm. The results demonstrate that attenuation of sound levels of 3dB, 13dB are achieved.

  • PDF

PPF와 SRF 제어기법을 사용한 지능구조물의 능동진동제어 (Vibration Suppression of Smart Structures Using PPF and SRF Control Techniques)

  • 라완규;곽문규;윤광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.400-406
    • /
    • 1997
  • This paper is concerned with the active vibration control of grid structure by means of piezoceramic actuators and sensors. The control technique used in this paper is based on the positive position feedback(PPF) and the strain rate feedback(SRF) control, which have been successfully used for the vibration control of beam structures. A new control methodology is developed using the PPF and SRF controller of single-input single-output method. The PPF controller is used for the suppression of first bending mode and SRF controller is used for the suppression of higher vibration modes of grid structure. Electric circuits for the realization of control schemes are explained in detail. The control techniques prove its effectiveness by experiments.

  • PDF

유연빔의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석 (Experiment of a Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam and Performance Analysis)

  • 표상호;신기홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.634-639
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

  • PDF

다중모드제어를 위한 단일 입출력 양변위 되먹임제어기의 설계 (Design of Single-Input Single-Output Positive Position Feedback Controller For the Control of Multiple Modes)

  • 정문산;곽문규;이명일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.310-313
    • /
    • 2005
  • This paper is concerned with the active vibration control of beam equipped with piezoceramic sensors and actuators. The single-input and single-output positive position feedback controller is considered as an active vibration controller for the beam. The proposed single-input and single-output positive position feedback controller can cope with many modes of interest by summing each positive position feedback controller designed for each mode. In this paper, theoretical formulation is first explained in detail. We discuss how to design the single-input and single-output positive position feedback controller for a target structure by considering Euler-Bemoulli beam. It is found that the theories developed in this study are capable of predicting the control system characteristics and its performance.

  • PDF

유연보의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석 (A Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam: Experiments and Its Performance Analysis)

  • 표상호;신기홍
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.651-657
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising Possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

분포센서를 가진 인공지의 PID-힘 제어 (PID-Force Control of a Artificial Finger with Distributed Force Sensor and Piezoelectric Actuator)

  • 이재정;홍동표;정태진;장남정이;정길도;노태수
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.94-103
    • /
    • 1996
  • This paper is concerned with the theroretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is uniform flexible cantilever beam equipped with a distributed set of compact grasping force secnsors. Control action is applied by a qiexoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro-mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem which the finger is commanded to grasp an object The PID-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment.

  • PDF

Health monitoring of a new hysteretic damper subjected to earthquakes on a shaking table

  • Romo, L.;Benavent-Climent, A.;Morillas, L.;Escolano, D.;Gallego, A.
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.485-509
    • /
    • 2015
  • This paper presents the experimental results obtained by applying frequency-domain structural health monitoring techniques to assess the damage suffered on a special type of damper called Web Plastifying Damper (WPD). The WPD is a hysteretic type energy dissipator recently developed for the passive control of structures subjected to earthquakes. It consists of several I-section steel segments connected in parallel. The energy is dissipated through plastic deformations of the web of the I-sections, which constitute the dissipative parts of the damper. WPDs were subjected to successive histories of dynamically-imposed cyclic deformations of increasing magnitude with the shaking table of the University of Granada. To assess the damage to the web of the I-section steel segments after each history of loading, a new damage index called Area Index of Damage (AID) was obtained from simple vibration tests. The vibration signals were acquired by means of piezoelectric sensors attached on the I-sections, and non-parametric statistical methods were applied to calculate AID in terms of changes in frequency response functions. The damage index AID was correlated with another energy-based damage index -ID- which past research has proven to accurately characterize the level of mechanical damage. The ID is rooted in the decomposition of the load-displacement curve experienced by the damper into the so-called skeleton and Bauschinger parts. ID predicts the level of damage and the proximity to failure of the damper accurately, but it requires costly instrumentation. The experiments reported in this paper demonstrate a good correlation between AID and ID in a realistic seismic loading scenario consisting of dynamically applied arbitrary cyclic loads. Based on this correlation, it is possible to estimate ID indirectly from the AID, which calls for much simpler and less expensive instrumentation.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어 (Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors)

  • 신호철;최승복;김승호
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제16권2호
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.