• Title/Summary/Keyword: piezo-magnetic

Search Result 41, Processing Time 0.025 seconds

Stabilization Analysis of Piezo-electric Converter for PFM and PWM Control (압전 변압기의 제어 방식에 따른 모델링 및 안정화분석)

  • Yun, Seok-Teak;Park, Seong-Woo;Won, Young-Jin;Lee, Jin-Ho;Kim, Jin-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.401-401
    • /
    • 2009
  • Recently, demands for the development of compact, lightweight power supplies with higher power density and higher efficiency have been increased. Since Piezoelectric Transformer (PT) was emerged in device and material industry, it has been suggested as a viable alternative to the magnetic transformer in some applications. PT has some advantages such as low profile and mechanical energy transfer with little electromagnetic interface (EMI). Also, PT can provide high voltage stepping ratio with good isolation and requires no copper windings saving copper usage especially for large voltage conversion differences. Conventional control of PT converter has mainly two-way. One is the pulse frequency modulation (PFM) control method and the other is the pulse width modulation (PWM) control with frequency fixed method. It is known that the maximum PT efficiency can be obtained when it operates near the resonant frequency of the PT. And, also PT's resonant frequency moves according to the load condition. Therefore, selection of PT converter control method is very difficult. This paper analyzes general piezo-electric converter modeling and proposes a guide-line to selection of control method and stabilization control.

  • PDF

Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects

  • Kunbar, Laith A. Hassan;Hamad, Luay Badr;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.619-630
    • /
    • 2020
  • This paper studies nonlinear free vibration characteristics of nonlocal magneto-electro-elastic (MEE) nanobeams resting on nonlinear elastic substrate having geometrical imperfection by considering piezoelectric reinforcement scheme. The piezoelectric reinforcement can cause an enhanced vibration behavior of smart nanobeams under magnetic field. All of previously reported studies on MEE nanobeams ignore the influences of geometric imperfections which are very substantial due to the reason that a nanobeam cannot be always perfect. Nonlinear governing equations of a smart nanobeam are derived based on classical beam theory and an analytical trend is provided to obtained nonlinear vibration frequency. This research shows that changing the volume fraction of piezoelectric constituent in the material has a great influence on vibration behavior of smart nanobeam under electric and magnetic fields. Also, it can be seen that nonlinear vibration behaviors of smart nanobeam are dependent on the magnitude of exerted electric voltage, magnetic potential, hardening elastic foundation and geometrical imperfection.

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

Examining the qualification of copper magnetic nanocatalyst design and its application in piezoelectric sensor

  • Yufeng Pang;Xiaojuan Li
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.743-753
    • /
    • 2023
  • Piezoelectricity is defined as the ability of certain materials to produce electric signals when mechanically stressed or to deform when an electrical potential is applied. Piezo technology is becoming increasingly crucial as intelligent devices use vibration sensors to detect vibrations in consumer electronics, the automotive industry, architectural design, and other applications. A wide range of applications is now possible with piezoelectric sensors, such as skin-attachable devices that monitor health and detect diseases. In this article, copper nanoparticles are used in the piezoelectric sensor as the driving agent of the magnetic field. Magnetic nanocatalysts containing copper nanoparticles are used due to their cheapness and availability. Considering that the increase of the electric field acting on the piezoelectric increases the damping (As a result, damping materials reduce radiation noise and increase material transfer losses by altering the natural vibration frequency of the vibrating surface). Among the advantages of this method are depreciating a significant amount of input energy using high energy absorption capacity and controlling slight vibrations in the sensors.

A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구)

  • An, Yong-Jun;Choi, Chung-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips

  • Momeni-Khabisi, Hamed;Tahani, Masoud
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.427-440
    • /
    • 2022
  • In the present study, the nonlocal strain gradient theory is used to predict the size-dependent buckling and post-buckling behavior of geometrically imperfect nano-scale piezo-flexomagnetic plate strips in two modes of direct and converse flexomagnetic effects. The first-order shear deformation plate theory is used to analyze analytically nano-strips with simply supported boundary conditions. The nonlinear governing equations of equilibrium and associated boundary conditions are derived using the principle of minimum total potential energy with consideration of the von Kármán-type of geometric nonlinearity. A closed-form solution of governing differential equation is obtained, which is easily usable for engineers and designers. To validate the presented formulations, whenever possible, a comparison with the results found in the open literature is reported for buckling loads. A parametric study is presented to examine the effect of scaling parameters, plate slenderness ratio, temperature, the mid-plane initial rise, flexomagnetic coefficient, different temperature distributions, and magnetic potential, in case of the converse flexomagnetic effect, on buckling and post-buckling loads in detail.

Vibration of piezo-magneto-thermoelastic FG nanobeam submerged in fluid with variable nonlocal parameter

  • Selvamani Rajendran;Rubine Loganathan;Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.489-500
    • /
    • 2024
  • This paper studies the free vibration analysis of the piezo-magneto-thermo-elastic FG nanobeam submerged in a fluid environment. The problem governed by the partial differential equations is determined by refined higher-order State Space Strain Gradient Theory (SSSGT). Hamilton's principle is applied to discretize the differential equation and transform it into a coupled Euler-Lagrange equation. Furthermore, the equations are solved analytically using Navier's solution technique to form stiffness, damping, and mass matrices. Also, the effects of nonlocal ceramic and metal parts over various parameters such as temperature, Magnetic potential and electric voltage on the free vibration are interpreted graphically. A comparison with existing published findings is performed to showcase the precision of the results.

Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects

  • Faleh, Nadhim M.;Abboud, Izz Kadhum;Nori, Amer Fadhel
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.707-717
    • /
    • 2020
  • In this paper, analysis of thermal post-buckling behaviors of sandwich nanobeams with two layers of multi-phase magneto-electro-thermo-elastic (METE) composites have been presented considering geometric imperfection effects. Multi-phase METE material is composed form piezoelectric and piezo-magnetic constituents for which the material properties can be controlled based on the percentages of the constituents. Nonlinear governing equations of sandwich nanobeam are derived based on nonlocal elasticity theory together with classic thin beam model and an analytical solution is provided. It will be shown that post-buckling behaviors of sandwich nanobeam in thermo-electro-magnetic field depend on the constituent's percentages. Buckling temperature of sandwich nanobeam is also affected by nonlocal scale factor, magnetic field intensity and electrical voltage.

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.659-674
    • /
    • 2020
  • The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

Design Optimization for the Magnetic Engine Valve Actuator (엔진 밸브 자기 구동기의 설계 최적화)

  • Soh, Hyun-Jun;Park, Soon-Ok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.584-589
    • /
    • 2009
  • As the automobile energy efficiency stands out an important matter of interest, the magnetic engine valve system receives attention. It has an advantage of no engine power leakage in opening and closing the valve. Moreover, it generates much bigger force than the piezo actuator system, so it can be a good alternative system of the cam and camshaft system. However, since the valve system is not light enough, it is necessary to make its weight reduce. In this study, topology optimization is applied to find the optimal shape of the armature in a magnetic valve system combined with the finite element analysis for the magnetic field analysis. The result is used to obtain a concept design. The adjoint variable method is employed in order to calculate the design sensitivity of the magnetic driving force in the armature component mostly to reduce the computational time during the repeated sensitivity calculation. The sequential linear programming is employed for the optimization algorithm.