• Title/Summary/Keyword: piezo-electric

Search Result 189, Processing Time 0.024 seconds

Simultaneous Detection of Biomolecular Interactions and Surface Topography Using Photonic Force Microscopy

  • Heo, Seung-Jin;Kim, Gi-Beom;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.402.1-402.1
    • /
    • 2014
  • Photonic force microscopy (PFM) is an optical tweezers-based scanning probe microscopy, which measures the forces in the range of fN to pN. The low stiffness leads proper to measure single molecular interaction. We introduce a novel photonic force microscopy to stably map various chemical properties as well as topographic information, utilizing weak molecular bond between probe and object's surface. First, we installed stable optical tweezers instrument, where an IR laser with 1064 nm wavelength was used as trapping source to reduce damage to biological sample. To manipulate trapped material, electric driven two-axis mirrors were used for x, y directional probe scanning and a piezo stage for z directional probe scanning. For resolution test, probe scans with vertical direction repeatedly at the same lateral position, where the vertical resolution is ~25 nm. To obtain the topography of surface which is etched glass, trapped bead scans 3-dimensionally and measures the contact position in each cycle. To acquire the chemical mapping, we design the DNA oligonucleotide pairs combining as a zipping structure, where one is attached at the surface of bead and other is arranged on surface. We measured the rupture force of molecular bonding to investigate chemical properties on the surface with various loading rate. We expect this system can realize a high-resolution multi-functional imaging technique able to acquire topographic map of objects and to distinguish difference of chemical properties between these objects simultaneously.

  • PDF

Radial Pulse Wave Detection system for the Korean Medicine (한방용(韓方用) 맥파 검출시스템)

  • Lee, H.J.;Kim, J.W.;Kim, H.O.;Park, Y.B.;Huh, W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.66-69
    • /
    • 1991
  • This paper describes a design of transducer for non-invasively detecting pressure radial pulse wave in aterial system and a recording system that for the studing the aterial pulse diagnosis of korean traditional medicine. The mechanism of transducer is composed of sensing mechanism, pressure sensor, conditioning amplifier. The variation of radial pulse pressure in the sensing mechanism is converted to the electric signal by piezo-resistive pressure sensor and it converted to the digital signal after preprocessing via A/D converter. The converted signals inputed to the computer as data files and then it display to the monitor for waveform watching and this datas can be used as the aterial pulse diagnosis data. This system effectively detect non-differential radial pulse wave and we conside that if analizing the recorded radial pulse wave, compared each other, it can be helpful in quantify radial pulse wave diagonosis of the Korean traditional medicine.

  • PDF

Design and Development of Micro Combustor (I) - Combustion Characteristics in Scale-Downed Combustor - (미세 연소기 개발(I) - 소형 연소기 환경에서의 연소 특성 -)

  • Lee, Dae-Hun;Choe, Gwon-Hyeong;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.74-81
    • /
    • 2002
  • Combustion phenomena in a sub-millimeter scale combustor have been investigated. To evaluate scale effect on flame propagation characteristics, a cylindrical combustion chamber with variable depth was built in-house. The combustor was charged with premixed gas of hydrogen and air and ignited electronically. A piezo electric pressure transducer recorded transient pressure after the ignition. Measurements were made at different test conditions specified with chamber depth and initial pressure as parameters. Visual observation was made through a quartz glass window on top side of the combustion chamber using high speed digital video camera. From the pressure data, available work was estimated and compared with energy input required for stable ignition. The preliminary results suggested that the net thermal energy release is sufficient to generate power and enables a combustor of the size in the present study to be used as the energy source of a micro power devices .

The Electro-Mechanical Signal Transformation of Piezo-Electric Transducer (압전식 탐촉자의 기계-전기 신호 변환)

  • Ahn, Tae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • The electromechanical reciprocity identity is introduced to relate the voltage at the terminals of a transducer to the acoustic wavefields scattered from the specimen. The voltage at the terminals of the transducer is expressed as an integral equation in terms of the displacement and stress of the incident and scattered waves on the closed surface enclosing the scatterer. The equation is used to relate the voltage at the terminals of an acoustic microscope's transducer to the acoustic wavefields at the interface between the specimen and the coupling fluid. The voltage calculated using the integral equation is compared with the experimental result.

  • PDF

The Preparation of ZnO Piezo-electric Thin Film for Surface Acoustic Wave Filter (탄성표면파 필터용 ZnO 압전 박막의 제조)

  • Lee, Dong-Yoon;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.10-14
    • /
    • 2005
  • Zinc Oxide(ZnO) thin films on Si (100) substrates were deposited by RF magnetron reactive sputtering. The characteristics of zinc oxide thin films with changing sputtering conditions such as argon/oxygen gas ratios, RF power, and substrate temperature, chamber pressure and target-substrate distance were investigated. To analyze a crystallographic properties of the films, $\theta/2{\theta}$ mode X -ray diffraction, SEM, and AFM analyses. C-axis preferred orientation, resistivity, and surface roughness highly depended on Ar/$O_2$ gas ratios. The resistivity of ZnO thin films rapidly increased with increasing oxygen ratio and the resistivity value of $9{\times}10^7\;{\Omega}cm$ was obtained at a working pressure of 10 mTorr with Ar/$O_2$=50/50. The surface roughness was also improved with increasing oxygen ratio and the ZnO films deposited with Ar/$O_2$=50/50 showed the excellent roughness value of $28.7{\AA}$.

  • PDF

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Improvement of Damage Localization Performance for CFRP-debonding defects using Piezo-electric Sensors (압전센서 기반 CFRP 부착면 탈락 손상영역 탐색성능 향상)

  • Kim, Ju-Won;Lee, Chang-Gil;Lee, Dong-Hwan;Chang, Ha-Joo;Park, Seung-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.311-314
    • /
    • 2011
  • 최근 콘크리트 구조물의 안전성강화를 위해 탄소섬유 강화 플라스틱(CFRP) 보강 공법이 널리 사용되고 있지만 잘 알려진 바와 같이 CFRP 보강재와 콘크리트 표면사이의 부착면 탈락은 보강재 자체의 손상보다 발생할 확률이 높고 이러한 부착면 탈락은 보강의 효과를 무의미하게 만들기 때문에 구조물 전체의 파괴로 직결될 수 있다. 이에 본 연구에서는 CFRP 부착면 탈락손상을 실시간으로 검색하기 위해 압전센서를 사용하는 구조물 건전성 평가 기술을 적용하였다. 이의 검증을 위해 CFRP로 보강된 콘크리트 보를 제작하였고 3단계로 증가하는 부착면 탈락 손상을 발생시켰다. 손상 증가 단계마다 CFRP 표면에 배열된 압전센서로부터 임피던스와 유도초음파 신호를 계측하였고 손상에 따른 신호변화를 정량화하기 위해 손상지수인 RMSD를 계산하였다. 더 구체적인 부착면 탈락 손상위치 탐색을 위해서 두 가지 계측 기법으로부터 구해진 RMSD 값를 중첩시키는 Superposed RMSD 가 제안되었다. 구해진 Superposed RMSD 값을 사용하여 커브 피팅이 수행되었고 도출된 커브의 최고값에 해당하는 위치값을 찾아 실제 손상위치와 비교함으로써 제안된 기법의 가능성을 검증해 보았다.

  • PDF

Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever (비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가)

  • 박준기;권현규;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

Design of Cymbal Displacement Amplification Device for Micro Punching System (마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계)

  • Choi, Jong-Pil;Lee, Kwang-Ho;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Seong-Uk;Chu, Andy;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.