• Title/Summary/Keyword: piezo film sensor

Search Result 27, Processing Time 0.021 seconds

A distributed piezo-polymer scour net for bridge scour hole topography monitoring

  • Loh, Kenneth J.;Tom, Caroline;Benassini, Joseph L.;Bombardelli, Fabian A.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.183-195
    • /
    • 2014
  • Scour is one of the leading causes of overwater bridge failures worldwide. While monitoring systems have already been implemented or are still being developed, they suffer from limitations such as high costs, inaccuracies, and low reliability, among others. Also, most sensors only measure scour depth at one location and near the pier. Thus, the objective is to design a simple, low cost, scour hole topography monitoring system that could better characterize the entire depth, shape, and size of bridge scour holes. The design is based on burying a robust, waterproofed, piezoelectric sensor strip in the streambed. When scour erodes sediments to expose the sensor, flowing water excites it to cause the generation of time-varying voltage signals. An algorithm then takes the time-domain data and maps it to the frequency-domain for identifying the sensor's resonant frequency, which is used for calculating the exposed sensor length or scour depth. Here, three different sets of tests were conducted to validate this new technique. First, a single sensor was tested in ambient air, and its exposed length was varied. Upon verifying the sensing concept, a waterproofed prototype was buried in soil and tested in a tank filled with water. Sensor performance was characterized as soil was manually eroded away, which simulated various scour depths. The results confirmed that sensor resonant frequencies decreased with increasing scour depths. Finally, a network of 11 sensors was configured to form a distributed monitoring system in the lab. Their exposed lengths were adjusted to simulate scour hole formation and evolution. Results showed promise that the proposed sensing system could be scaled up and used for bridge scour topography monitoring.

Development of Infusion Pump System using Photodiode Array (광 다이오드 어레이 센서를 이용한 인퓨전 펌프 시스템의 개발)

  • Kwon, Jang-Woo;Park, Jung-Sun;Lee, Dong-Hun;Lee, Eung-Huyk;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.65-73
    • /
    • 1996
  • One of the important factor in drug stuffs to a patient is to inject exact amount with stable flow rates. Since improper injection amount and flow rates would cause bad effect to recovery of a patient, the detecting sensors with high sensitivity is required for an injection pump systems' performance improvement. In this study, the three sensors, piezo film sensor, photo transistor and photo array, were compared to find best one for an injection pump monitoring system. Using suggested data processing technique and photo array sensors, we could minimize the effect of interference, disturbance, illumination, and sensitivity change caused by sensor's position. According to the experiments, the photo array showed the higher reliance than any other the three types of sensors.

  • PDF

Research on Impact Sensors for Developing the Electronic Body Protector of Taekwondo (태권도 전자호구 개발을 위한 충격감지 센서 연구)

  • Ki, Jae-Sug;Jeong, Dong-Hwa;Lee, Hyun-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.648-655
    • /
    • 2019
  • This paper proposes the differential development of a Taekwondo electronic body protector. For this development, the most suitable sensor system was selected after analyzing and testing various sensor methods (magnetic sensors, electric capacity sensors, contact switch sensors, and piezo-film sensors) that could be applied in the electronic body protector, the selected sensors were distributed to the body and feet to make a more precise hit score, unlike the existing system in which all sensors are centralized on the body. Furthermore, it aims to illuminate using a lightweight film-type piezoelectric sensor on the body protector. In the case of an existing electronic body protector, all sensors and network device were concentrated on the body protector, so users need to purchase a set if they want it. On the other hand, the proposed system cloud can be used individually using a smart scoring WEP program. The effects of decreasing weight by up to 20% were compared with those of the existing system. Setting up a test facility is very difficult, so more study will be needed to analyze the effects of a hit.

Damage Monitoring for Wind Turbine Blade using Impedance Technique (임피던스 기법을 이용한 풍력 블레이드 손상 모니터링)

  • Huh, Yong-Hak;Kim, Jongil;Hong, Seonggu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.452-458
    • /
    • 2013
  • Impedance based monitoring technique was investigated to evaluate the damage occurring in wind turbine blade. In this study, PVDF film piezo sensors were patched on the 10 kW wind turbine blade, and impedance was measured over the frequency range of 1~200 MHz under fatigue loading. With applying fatigue loads on the blade, change in maximum deflection of the blade and local strain values could be obtained from the strain gages attached on the blade, and difference of the impedance signatures was also observed. From these data, it could be found that local damage or geometrical change in the blade structure happened. To quantitatively compare the impedance signature patterns, a statistical algorithm, scalar damage metric M was used. It was calculated from the impedance signatures considering fatigue loads and location of the sensors. The metric values were compared to correlate the metrics with damage in the blade.

A Study on the Fabrication of Piezoelectric Organic Thin Films by using Physical Vapor Deposition Method and Sensor Characteristics (진공증착법을 이용한 압전 유기 박막의 제조와 센서 특성에 관한 연구)

  • Park, Su-Hong;Lim, Eung-Choon;Park, Jong-Chan;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.35-39
    • /
    • 2001
  • The purpose of this paper is improvement the piezoelectric of Polyvinylidene fluoride(PVDF) organic thin films is fabricated by vapor deposition method. The piezoelectric of PVDF organic thin films attributed to dipole orientation in crystalline region. Also, the piezoelectric characteristic reduced that dipole moments orientation in crystalline region interfered with impurity carriers. Therefore, PVDF organic thin films fabricated with high substrate temperature condition for crystallinity improvement. The crystallinity of PVDF organic thin films fabricated by this condition increase from 47 to 67.8%. The ion density of PVDF organic thin films fabricated by substrate temperature variation from $30^{\circ}C$ to $105^{\circ}C$ decreased from $1.62{\times}10^{16}cm^3$ to $6.75{\times}10^{11}cm^3$ when temperature and frequency were $100^{\circ}C$, 10Hz, respectively. The $d_{33}$ and piezo-voltage coefficient of PVDF organic thin films increased from 20pPC/N to 33pC/N and $162.9{\times}10^{-3}V{\cdot}m/N$ to $283.2{\times}10^{-3}V{\cdot}m/N$, respectively. For the sake of the applications of piezoelectric sensor, we analyzed the output voltage characteristic as a function of the distance between an oscillator of 28kHz and PVDF organic thin film transducer. From this, we found that the output voltage is inversely proportional to the distance. At this time, the period was about $35.798{\mu}s$ and equal the oscillator frequency.

  • PDF

Growth of Thin Film Using Chemical Bath Deposition Method and Their Photoconductive Characteristics (CBD 방법에 의한 CdS 박막의 성장과 광전도 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeoung, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.3-10
    • /
    • 1993
  • Polycrystalline CdS thin films were grown on ceramic substrate using a chemical bath deposition method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdS polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdS samples annealed in $N_{2}$ gas at $550^{\circ}C$ it was found hexagonal structure whose lattice constants $a_{o}$ and $c_{o}$ were $4.1364{\AA}$ and $6.7129{\AA}$, respectively. Its grain size was about $0.35{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility defending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33K and 150k and by polar optical scattering at temperature range of 150K and 293K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Characterization of CdSe Thin Film Using Chemical Bath Deposition Method (Chemical Bath Deposition 방법으로 제작한 CdSe 박막의 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.81-86
    • /
    • 1993
  • Polycrystalline CdSe thin films were grown on ceramic substrate using a chemical bath deposition (CBD) method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdSe polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdSe samples annealed in $N_{2}$ gas at $450^{\circ}C$ it was found hexagonal structure whose lattice parameters $a_{o}$ and $c_{o}$ were $4.302{\AA}$ and $7.014{\AA}$, respectively. Its grain size was about $0.3{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33 K and 200 K, and by polar optical scattering at temperature range of 200 K and 293 K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF