• 제목/요약/키워드: piezo

검색결과 710건 처리시간 0.028초

플립칩 접합용 초음파 혼의 CFD 열유동 해석 (Heat transfer analysis of CFD at the Ultrasonic horn bonding flip chip)

  • 심현석;리광훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2750-2753
    • /
    • 2008
  • This paper introduce the CFD analysis for predicting the heat transfer at the Ultrasonic horn. Approximately Ultrasonic horn separates two part. One is preheating part and the other is cooling part. Temperature of preheating part rise up by $260^{\circ}C$ that make it possible to attach a chip to a semiconductor. Also there is a piezo material in the cooling part. When piezo work, it generates heat of $100^{\circ}C$. It can stand by $150^{\circ}C$. But the high temperature conducted from the preheating part has a bad affect on the piezo. These situation make it necessary cooling at piezo. Previously except of the piezo, all of them are composed of the SUS440c that has good thermal conductivity. This study shows way that not only cooling the piezo but also cutting off the conduction between preheating part and cooling part by using the Ti and Duralumin that have low thermal conductivity compare with the SUS440c. Conclusion of CFD analysis that the heat coming from the piezo can't be transferred the horn cause of the Ti and Duralumin.

  • PDF

CRDI 디젤엔진의 피에조 인젝터 불량에 따른 파형 분석에 관한 실험적 연구 (An Experimental Study on the Waveform Analysis According to Troubles of Piezo Injector of CRDI Diesel Engine)

  • 유종식;김철수
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.783-789
    • /
    • 2018
  • This paper investigates the relationship of voltage and current waveform between normal piezo injector and deterioration abnormal piezo injector. The experimental methods using Pico oscilloscope and GDS scan tool are employed to measure current and voltage waveform and fuel pressure of piezo injector. The experiment is carried out during no-load condition. A summary of the important results are as follows. 1) In case of normal injector, the fluctuation of duration time of piezo injector was linearly and regularly decreased with increasing engine speed, but the that of deterioration piezo injector was irregularly decreased with increasing engine speed. 2) In main injection, the peak value of the current waveform of abnormal injector was larger than that of normal injector, the duration time of deteriorated abnormal injector was less than that of normal injector at 800rpm and 1500rpm, but the duration time of deteriorated abnormal injector was larger than that of normal injector at 2000rpm and 3000rpm. This irregularity appears to be caused by the deterioration of the injector.

Piezo 압전 결정체에서의 표면탄성파 증폭에 관한 연구 (A Study on Surface Acoustic-Wave Amplfication in Piezo-electric Crystals)

  • 이윤현
    • 한국통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.51-57
    • /
    • 1981
  • 半導'||'&'||'#20307;內에서 運動하는 carrier는 Piezo 壓電物質을 進行하는 彈性波에 利得이나 損失을 줄 수 있게 된다. 本 論文에서는 半導 film에서의 drifting carrier와 Piezo 壓電 基板上을 進行하는 Rayleigh Wave間의 相互作用의 表面彈性波 增幅을 論하였다. Piezo 壓電媒質에서 表面波 의 電磁的 境界條件이 表面波 速度에 미치는 影響에 대한 式을 求하였다. 增幅에 필요한 bunching 電子 電子 散에 의해 抑制되므로 높은 周波數에서 利得의 低下를 招來하나 적당한 壓電 物質일 경우 超高周波 領域에서도 상당한 增幅이 기대됨을 알 수 있다.

  • PDF

승용CRDi용 3세대 피에조 인젝터 유압해석모델 개발 및 검증 (Verification and Hydraulic Model Development of 3rd Generation Piezo Injector for CRDi System in Passenger Vehicle)

  • 조인수;정명철;이진욱
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.181-187
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to its emission characteristics and fuel consumption. In this study, numerical model of 3rd generation piezo-driven injector was designed to analyze the hydraulic performance. Also the injection response characteristics was investigated by using the AMESim simulation code. From this study, it was shown that 3rd generation piezo-driven injector had a faster response and had better control capability due to its hydraulic bypass-circuit that has potential to higher hydraulic characteristics and improved accuracy of injected fuel quantity.

친환경 디젤엔진용 차세대 피에조 인젝터의 구동성능 해석 (Analysis of the Driving Performance in Piezo Injector for Clean Diesel Engine)

  • 이진욱;강건용;민경덕
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.33-34
    • /
    • 2006
  • In this study, a prototype piezo-driven Injector. as a new method driven by piezoelectric energy, has been designed and fabricated based on the concept of inverse piezo-electric effect to overcome the major drawbacks of conventional solenoid-driven injector with a fixed and slow control of injection rate. The effects of an electric control between the solenoid valve and piezo-ceramic stack for injector needle's driving on the dynamic characteristics were usually investigated. We found that this piezo-electric actuator has the main advantage to drastically reducing the time of injector nozzle opening, as well to exert higher force output levels.

  • PDF

바이패스 방식 피에조 인젝터의 피에조 적층 및 인가전압에 따른 연료분사 특성 연구 (A Study on Injection Characteristics of Piezo Injector with Bypass by Various Piezo Stack and Applied Voltage)

  • 조인수;김우택;이진욱
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In the common rail fuel injection system, which is the core of diesel high efficiency and NOX reduction, injection strategies such as high pressure injection of fuel, accurate injection rate control, and multistage injection are important to increase fuel atomization. In this study, the bypass type piezo injector for the electronic control based common rail injection system applied to diesel fuel vehicle was studied. In particular, the injection rate and internal fuel flow characteristics of the high-pressure injector according to the piezo stacking number and applied voltage were analyzed by theoretical numerical method. When the applied voltage changes, it is determined that additional fuel flow through the bypass compensates for the reduced valve driving force due to the change in the driving voltage.

Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock

  • Xiong, Qi-lin;Tian, Xin
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.187-196
    • /
    • 2017
  • In this work, transient thermo-piezo-elastic responses of an infinite functionally graded piezoelectric (FGPE) plate whose upper surface suffers time-dependent thermal shock are investigated in the context of different thermo-piezo-elastic theories. The thermal and mechanical properties of functionally graded piezoelectric plate under consideration are expressed as power functions of plate thickness variable. The solution of problem is obtained by solving the corresponding finite element governing equations in time domain directly. Transient thermo-piezo-elastic responses of the FGPE plate, including temperature, stress, displacement, electric intensity and electric potential are presented graphically and analyzed carefully to show multi-field coupling behaviors between them. In addition, the effects of functionally graded parameters on transient thermo-piezo-elastic responses are also investigated to provide a theoretical basis for the application of the FGPE materials.

차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구 (A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection)

  • 이진욱;민경덕
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

Effects of Needle Response on Spray Characteristics In High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System

  • Lee Jin Wook;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1194-1205
    • /
    • 2005
  • The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector's needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector's needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle's behavior with an accelerometer and injection rate measurement employing Bosch's method was conducted. The experimental results show that the spray tip penetrations of piezo­driven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.

압전 세라믹 액추에이터를 위한 소형 고전압 구동 증폭기 개발 (Development of Compact High Voltage Driving Amplifier for Piezo Ceramic Actuator)

  • 김순철;한정호;이수영
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.5409-5415
    • /
    • 2012
  • 압전 세라믹 액추에이터는 스프레이, 디스펜서, 밸브제어와 같은 다양한 산업제품들에 응용된다. 압전 세라믹 소자의 기계적인 변위의 크기는 인가 전압의 크기에 의해 정해지므로, 압전 세라믹 액추에이터 구동을 위해서는 고전압 전원장치와 함께 전력증폭기가 필요하다. 본 논문에서는 간단하고 크기가 작은 H-브리지 형태의 전력증폭기와 플라이백 고전압 스위칭 모드 전원장치를 개발하였다. H-브리지 형태의 전력증폭기는 펄스폭 변조를 이용하여 압전 세라믹 액추에이터에 대한 에너지 입력의 크기를 쉽게 조절할 수 있다는 장점이 있다.