• 제목/요약/키워드: pier height

검색결과 65건 처리시간 0.03초

Desired earthquake rail irregularity considering random pier height and random span number

  • Jian Yu;Lizhong Jiang;Wangbao Zhou
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.41-49
    • /
    • 2024
  • In recent years, China's high-speed railway (HSR) line continues to expand into seismically active regions. Analyzing the features of earthquake rail irregularity is crucial in this situation. This study first established and experimentally validated a finite element (FE) model of bridge-track. The FE model was then combined with earthquake record database to generate the earthquake rail irregularity library. The sample library was used to construct a model of desired earthquake rail irregularity based on signal processing (SFT) and hypothesis principle. Finally, the effects of random pier height and random span number on desired irregularity were analyzed. Herein, an equivalent method of calculating earthquake rail irregularities for random structures was proposed. The results of this study show that the amplitude of desired irregularity is found to increase with increasing pier height. When calculating the desired irregularity of a structure with unequal pier heights, the structure can be regarded as that with equal pier heights (taking the largest pier height). For a structure with the span number large than 9, its desired irregularity can be considered equal to that of a 9-span structure. For the structures with both random pier heights and random span number, their desired irregularities are obtained by equivalent calculations for pier height and span number, respectively.

교각 기둥시공을 위한 매니퓰레이터 엔드 이펙터 설계 (Design of Manipulator End Effectors for Pier Column Construction)

  • 정태일;이상원;이상윤;유지환
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.207-215
    • /
    • 2021
  • There is a risk of serious injury to workers who work at height in pier construction process. By using auto climbing formwork system that does not need to dismantle and reinstall formworks, it is possible to improve work efficiency and safety of workers. However, auto climbing formwork system still requires workers to work on a pier for rebar connection works and so on. In order to eliminate works by workers on the pier, robot manipulators with special end effectors are proposed. Through analysis of works on the pier, three specialized end effectors which are a gripper, a rebar coupler press, and a concrete vibrator, are suggested. Also, new pier construction scenario by the suggested system is confirmed using 3d modeling. It is expected that the proposed system and method enables pier construction without workers on piers. It will increase safety and efficiency of pier construction.

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.

Running safety of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.207-222
    • /
    • 2020
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train subjected to fluctuating crosswind. To ensure the safe operation in metro lines in mountain cities, running safety of the metro train over the high-pier bridge under crosswind is analyzed in this paper. Firstly, the dynamic model of the wind-train-bridge (WTB) system is built, in which the speed-up effect of crosswind is fully considered. On the basis of time domain analysis, the basic characteristics of the WTB system with high-pier are analyzed. Afterwards, the dynamic responses varies with train speed and wind speed are calculated, and the safety zone of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city is determined. The results indicate that, fluctuating crosswind triggers drastic vibration to the metro train and high-pier bridges, which in turn causes running instability of the train. For this reason, the corresponding safety zone for metro train running on the high-pier is proposed, and the metro traffic on the high-pier bridge should be closed as the mean wind speed of standard height reaches 9 m/s (15.6 m/s for the train).

불균일단면교각 주위의 사석 세굴 보호공 (Riprap Scour Countermeasures around Nonuniform Bridge Piers)

  • 윤태훈;박기두
    • 한국수자원학회논문집
    • /
    • 제33권4호
    • /
    • pp.385-392
    • /
    • 2000
  • 교각과 기초로 구성되는 불균일단면교각 주위의 사석보호공의 거동에 관련된 인자들의 영향에 관한 실험결과가 기술된다. 불균일단면교각은 교각의 전 길이에 대한 단면이 일정하지 않고 직경 bp의 원주가 보다 큰 직경 bf인 기초에 설치된 구조이다. 사석보호공의 안정은 기초의 높이에 따라 크게 영향을 받으며 한계기초높이, Zc가 존재함이 밝혀졌다. 한계기초높이는 균일단면교각의 한계유속과 같은 한계유속을 갖는 불균일단면교각의 기초높이로 정의되고 실험결과 Zc=0.8bf로 밝혀진다. 기초높이가 Zc보다 작으면 기초의 상류연장으로 작용하여 사석보호공은 더 안정하게 되고, 기초높이가 Zc보다 크게 되면 기초는 단면이 증대된 교각으로 작용하고 기초 자체의 하강류로 인하여 사석보호공은 불안정하게 되어 쉽게 움직이게 된다. 기초상단면적의 영향과 불균일단면교각의 사석보호공의 크기 결정방법이 또한 기술된다.

  • PDF

Study on Characteristics of Displacement and Stress of Piers under Adjacent load

  • Song, Bo;Zhang, Jingxing;Zhang, Zunke;Wang, Yanxuc;Kim, Taehwan
    • 한국재난정보학회 논문집
    • /
    • 제12권1호
    • /
    • pp.40-46
    • /
    • 2016
  • Nowdays, adjacent loading bringing enormous harm to the existing bridge in engineering construction. In this paper, the influencing mechanism of adjacent loading to pier and Law of displacement of pier is researched through living examples, and the safe influence area has been defined. Research shows that: the main damages to piers is caused by the side loading; lateral displacement index of pier top surface is more conservative than the pier additional stress index; it is secure when the distance of adjacent load is 0.5 times of the height of accumulation or 6m, otherwise it would be very scary, and the monitoring measure is necessary.

Rational analysis model and seismic behaviour of tall bridge piers

  • Li, Jianzhong;Guan, Zhongguo;Liang, Zhiyao
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.131-140
    • /
    • 2014
  • This study focuses on seismic behaviour of tall piers characterized by high slender ratio. Two analysis models were developed based on elastic-plastic hinged beam element and elastic-plastic fiber beam element, respectively. The effect of the division density of elastic-plastic hinged beam element on seismic demand was discussed firstly to seek a rational analysis model for tall piers. Then structural seismic behaviour such as the formation of plastic hinges, the development of plastic zone, and the displacement at the top of the tall piers were investigated through incremental dynamic analysis. It showed that the seismic behaviour of a tall pier was quite different from that of a lower pier due to higher modes contributions. In a tall pier, an additional plastic zone may occur at the middle height of the pier with the increase of seismic excitation. Moreover, the maximum curvature reaction at the bottom section and maximum lateral displacement at the top turned out to be seriously out of phase for a tall pier due to the higher modes effect, and thus pushover analysis can not appropriately predict the local displacement capacity.

2경간 연속 철도교의 종방향 거동에 관한 연구 (A Study on the Longitudinal Behavior of 2-Span Continuous Railway Bridge)

  • 임정순;조재병;방윤석
    • 한국방재학회 논문집
    • /
    • 제1권1호
    • /
    • pp.81-90
    • /
    • 2001
  • 2경간 연속 철도교의 종방향 거동에 영향을 미치는 여러 인자들에 대해서 연구하였다. 그 인자들로는 교각 강성의 크기, 교각의 높이, 교각기초의 크기와 교각받침의 강성을 변화시켜 그에 따른 변화양상을 살펴보았다. 그 결과 고정단 교각에서의 여러 인자들의 변화에 따른 종방향 거동의 변화가 가동단 교각에서의 변화에 따른 영향보다 크다는 사실을 확인할 수 있었다. 또한, 받침강성을 변화시켜서 종방향 거동을 제어하는 것이 다른 인자들을 변화시키는 것보다 더 경제적이라 할 수 있다.

  • PDF

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

Seismic behavior of thin-walled CFST pier-to-base connections with tube confined RC encasement

  • Xuanding Wang;Yue Liao;Jiepeng Liu;Ligui Yang;Xuhong Zhou
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.217-235
    • /
    • 2024
  • Concrete-filled steel tubes (CFSTs) nowadays are widely used as the main parts of momentous structures, and its connection has gained increasing attention as the complexity in configuration and load transfer mechanism. This paper proposes a novel CFST pier-to-footing incorporating tube-confined RC encasement. Such an innovative approach offers several benefits, including expedited on-site assembly, effective confinement, and collision resistance and corrosion resistance. The seismic behavior of such CFST pier-to-footing connection was studied by testing eight specimens under quasi-static cyclic lateral load. In the experimental research, the influences on the seismic behavior and the order of plastic hinge formation were discussed in detail by changing the footing height, axial compression ratio, number and length of anchored bars, and type of confining tube. All the specimens showed sufficient ductility and energy dissipation, without significant strength degradation. There is no obvious failure in the confined footing, while local buckling can be found in the critical section of the pier. It suggests that the footing provides satisfactory strength protection for the connection.