• Title/Summary/Keyword: pidan yolk

Search Result 4, Processing Time 0.021 seconds

Effect of Different Cations on Pidan Composition and Flavor in Comparison to the Fresh Duck Egg

  • Ganasen, Palanivel;Benjakul, Soottawat;Hideki, Kishimura
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.214-220
    • /
    • 2013
  • The effects of different cations on its composition and flavor characteristics of pidan white and yolk produced with duck egg in comparison to its fresh egg were investigated. Mineral content such as calcium, magnesium, sodium and potassium were significantly increased in pidan yolk irrespective of its cations in pickle solution in comparison to the fresh yolk (P<0.05). It confirmed the migration of minerals from the pickling solution to the egg. However, calcium and magnesium was found lower in 0.2% $PbO_2$ treated pidan. Less pidan flavor compounds were generated in pidan white produced with the aid of 0.2% $PbO_2$. It confirmed that binding of lead prevent the maillard reaction in the pidan treated with $PbO_2$. Benzaldehyde, ketones, alcohol and acid found in the pidan white treated with 0.2% $ZnCl_2$ reveals that volatiles are generated most likely from maillard reaction. However, pidan yolk of both 0.2% $PbO_2$ and 0.2% $ZnCl_2$ showed higher generation of volatiles more likely from yolk lipids. Butanal, pentanal, hexanal, and heptanal are of those aldehydes found in 0.2% $ZnCl_2$ treated pidan yolk whereas hexanal is the only aldehyde detected in 0.2% $PbO_2$ treated pidan yolk. Thus, cations in the pickling solution affect the flavor characteristics of pidan white and yolk.

A Study on the Pidan-Making Process with Korean Bird′s Eggs (한국산 조란류의 피단제조에 관한 연구)

  • 홍진영;염초애;신선영
    • Korean journal of food and cookery science
    • /
    • v.5 no.1
    • /
    • pp.63-67
    • /
    • 1989
  • The alkali solution consisting of 5% NaOH, 5% NaCl, 2% Tea is most suitable for making pidan. During the soaking period, the values of pH increased from pH 9.02~ 9.19 to pH 12 in the egg white and increased from PH 6.1 to PH 11.63 in the egg yolk. Quail's egg jelled on the 7th day of immersion and the hen's egg and duck's egg jelled on the 10th day of immersion. The Quail's egg ripened at $25^{\circ}C$ in 30~35 days, and Sunghua crystals were formed at the end of the ripening period The moisture content of pidans decreased by 3.5~4.0%, but relatively crude protein, crude fat and crude ash increased by 1.0%, 1.9% and twice respectively. The content of Ca in the hen's pidan and quail's pidan increased about 40%, that of K in the duck's pidan increased about 13% and that of Mg in the hen's pidan and duck's pidan increased about 23~28%. The content of Na in the 3 groups all increased approximately 7 times. The content of total cholesterol level in pidan yolks decreased by 21~40% in each pidan. As a result of a sensory evaluation, the white hen's pidan was most agreeable in flavor and the quail's pidan was most agreeable.

  • PDF

Comparative Study on the Nutritional Value of Pidan and Salted Duck Egg

  • Ganesan, P.;Kaewmanee, T.;Benjakul, S.;Baharin, B.S.
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Pidan and salted duck eggs are of nutritional rich alternative duck egg products which are predominantly consumed in China, Thailand, South Korea and other Chinese migrated countries. Both eggs are rich in proteins, lipids, unsaturated fatty acids and minerals. A Pidan whole egg contains 13.1% of protein, 10.7% of fat, 2.25% of carbohydrate and 2.3% of ash, whereas the salted duck egg contains 14% of protein, 16.6% of fat, 4.1% of carbohydrate and 7.5% of ash. The fresh duck egg contains a range of 9.30-11.80% of protein, 11.40-13.52% of fat, 1.50-1.74% of sugar and 1.10-1.17% of ash. Proteins, lipids, and ash contents are found to be greatly enhanced during the pickling and salting process of pidan and salted duck eggs. However, the alkaline induced aggregation of pidan leads to degradation and subsequent generation of free peptides and amino acids. Very few amino acids are found to be lost during the pickling and storage. However, no such losses of amino acids are reported in salted duck eggs during the salting process of 14 d. Phospholipids and cholesterol contents are lower in pidan oil and salted duck egg yolk oil. Thus, the pidan and salted duck eggs are nutritionally rich alternatives of duck egg products which will benefit the human health during consumption.

Effect of Concentration of NaOH and NaCl in Dipping Solution and Dipping Period of Egg in Completeness of Egg Pidan (침지액의 NaOH와 NaCl의 농도 및 계란 침지기간이 계란 피단의 완성도에 미치는 영향)

  • Shin, Teak-Soon;Cho, Seong-Keun;Lee, Hong-Gu;Cho, Byung-Wook;Kang, Han-Seok;Park, Hyean-Cheal;Bae, Seok-Hyeon;Kim, Yun-Seok;Kim, Byeong-Woo
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.117-126
    • /
    • 2012
  • This study carried out on the manufacturing of pidan. The production of pidan can be one of solutions for over-produced eggs and stable egg price. For the alkali-pickling solution for manufacturing of Pidan, the tested concentration of NaOH and NaCl were respectively as 3, 5, 7% and 5, 10, 15, 20%, and examined every 2 days for 14days. According to the results, pH value of alkali-pickling solution was increased by the increment of NaOH concentration and the pickling period, and was decreased by the increment of NaCl concentration. The pH value of egg yolk was increased by the increment of NaOH concentration, but it was not significantly different by the NaCl concentration. By the increment of NaOH and NaCl concentrations, the alkali infiltration in egg yolk and egg white was accelerated. Furthermore, the weight change of the eggs in the alkali-solution has no effects on manufacturing of Pidan. Liquefied albumen showed significant differences by NaOH concentration rather than that of NaCl. There was no liquefied albumen for 14days at 3% of NaOH, but it was found between 11-12days at 5% and 8-10days at 7%, respectively. The pH values of egg white when it was liquefied albumen were between 11.8 and 12.0. Pidan was made by heat treatment after 6-7days dipped in the solution at the concentration of 7%, about 10days at 5%, and 12-14days at 3% of NaOH, respectively. Although, the period of manufacturing of Pidan was saved by the increment of NaOH concentration, liquefied albumen was accelerated and the food preference was decreased by ammonia odor. Therefore, the suitable concentration of NaOH is between 3 and 5%, and that of NaCl is between 5 and 10% due to the effect of salinity by the soaking period. Through this study, optimal pickling solution and dipping time for manufacturing of Pidan was figured out, and also find out that it can save a time about 15days for manufacturing of Pidan.